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Abstract

Complex bulk samples of insects from biodiversity surveys present a challenge for taxonomic

identification, which could be overcome by high-throughput imaging combined with machine

learning for rapid classification of specimens. These procedures require that taxonomic labels

from an existing source data set are used formodel training and prediction of an unknown tar-

get sample. However, such transfer learningmay be problematic for the study of new samples

not previously encountered in an image set, for example, from unexplored ecosystems, and

require methods of domain adaptation that reduce the differences in the feature distribution

of the source and target domains (training and test sets).We assessed the efficiency of domain

adaptation for family-level classification of bulk samples of Coleoptera, as a critical first step in

the characterization of biodiversity samples. Neural networkmodels trainedwith images from

a global database of Coleoptera were applied to a biodiversity sample from understudied for-

ests in Cyprus as the target. Within-dataset classification accuracy reached 98% and

depended on the number and quality of training images, and on dataset complexity. The accu-

racy of between-datasets predictions (across disparate source–target pairs that do not share

any species or genera) was at most 82% and depended greatly on the standardization of the

imaging procedure. An algorithm for domain adaptation, domain adversarial training of neural

networks (DANN), significantly improved the prediction performance of models trained by

non-standardized, low-quality images. Our findings demonstrate that existing databases can

be used to train models and successfully classify images from unexplored biota, but the imag-

ing conditions and classification algorithms need careful consideration.
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INTRODUCTION

Biological identifications increasingly rely on machine learning

algorithms that use photographic images to place unidentified speci-

mens into a taxonomic classification. As these methods are proving toTomochika Fujisawa and Víctor Noguerales contributed equally to this study.
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be very powerful especially for identification of the species-rich and

morphologically diverse insects, it is now possible to place a specimen

with high confidence against curated image libraries, for example,

those obtained from pinned museum collections (Buschbacher

et al., 2020; Hansen et al., 2020). With the rapid increase of such

images, machine learning can greatly increase the capacity for species

identification without putting demand on scarce taxonomy experts

(Høye et al., 2021; Valan et al., 2019). The methodology, therefore, is

likely to play a major role in the taxonomic endeavour in future, and

deep learning potentially can have similar impacts on the practice of

taxonomy as the revolution of DNA barcoding and metabarcoding

some 20 years ago, or it could work in concert with these molecular

approaches (Høye et al., 2021; Wührl et al., 2022; Yang et al., 2022).

However, the true potential and possible limitations of algorithmic

methods for exploiting the information contained in specimen images

remain to be established, as the various applications and choice of

machine learning algorithms continue to be refined (Romero

et al., 2020; Valan et al., 2019).

The greatest challenge for modern taxonomy probably is the

study of highly diverse and poorly studied biotas and geographic

regions around the world, harbouring many undescribed species

(Costello et al., 2013). In particular, in studies of insect diversity, such

as those from tropical forest canopy or the soil, huge numbers of

specimens are collected and subsequently need to be classified and

counted as part of ecological and environmental studies (Novotny

et al., 2007; Caruso et al., 2019). In these circumstances, specimens

are often assigned to high taxonomic ranks at order and family levels

(Karlsson et al., 2020), for example, for broad ecological comparisons

(Stork & Grimbacher, 2006) and ecological status assessment using

bulk-sample specimens in freshwater ecosystems (Escribano

et al., 2018). Thus, despite the lack of taxonomic resolution, family-

level assignments are a critical first-step to characterize biodiversity

samples and demand rarely available broad knowledge of insects

across taxonomic groups and geographic regions. Imaging of these

specimens is comparatively fast with the help of recently described

automated imagers (Ärje et al., 2020; Wührl et al., 2022) or by taking

high resolution images of large sets of specimens in a single photo,

which can then be cropped to represent single individuals for subse-

quent classification (Hudson et al., 2015; Bian et al. 2022). Automated

classification based on these images would remove the need for man-

ual identification by taxonomic experts who individually can handle

only a small portion of the diversity spectrum usually encountered in

such studies (Basset et al., 2012), and thus may help to provide rapid

assessment of threatened insect assemblages, where speed is a

priority.

In machine learning, images are classified against a set of defined

objects, for example, the images of a particular taxonomic group. A

model trained to separate the types of images in this source is used to

classify unlabelled objects in the target, such as an unknown set of

specimens. Most recent studies used convolutional neural networks

(CNN, LeCun et al., 2015) for the task of image classification. Because

of the lack of images for training the full parameters of a CNN model,

approaches like fine-tuning of the existing CNN (Ärje et al., 2020) or

feature transfer from the pre-trained CNN (Valan et al., 2019) are

commonly used in biodiversity studies, following the successful appli-

cations of pre-trained CNN outputs as generic image features

(Donahue et al., 2013; Razavian et al., 2014). These methods of trans-

fer learning (sensu Valan et al., 2019; see Table S1 for a detailed ter-

minology) have already shown great power in taxon annotation of

insect specimens, and in some cases, surpass the capabilities of

trained taxonomists (Valan et al., 2021).

Yet, applications of image classification algorithms for insect bio-

diversity research have mainly been limited to narrow tasks and spe-

cific target sets, such as pinned museum specimens (Hansen

et al., 2020; Valan et al., 2019), aligned body parts (Buschbacher

et al., 2020; Klasen et al., 2022), or small target groups of a few spe-

cies (Ärje et al., 2020; Popkov et al., 2022). In most of these studies,

the unlabeled (target) set is from the same dataset, that is, the target

taxa at species or higher hierarchical levels are included in the training

set. However, as hitherto unsampled specimen sets are included, the

feature space of source and target domains no longer has similar dis-

tributions. Thus, aligning the disparity between domains requires a

trained model that can be generalized across the entire feature space

of the domains, using procedures of ‘domain adaptation’ (e.g., Pan &

Yang, 2010; Farahani et al., 2020; see Table S1). Although methods

for domain adaptation have been successfully applied to fields such as

medical image classification (Guan & Liu, 2021), they may also be use-

ful for analysis of biodiversity samples and the classification of insect

specimens from unexplored areas whose components are unlikely to

be present in the training set.

Building an image-based classification system may be further

complicated by several factors affecting the feature distribution of

source and target datasets. Capture bias is a well-established problem

in machine learning, as objects appear in different contexts (location,

lighting, background, etc.) or are taken on different imaging devices.

Images of insects may be from collection specimens taken in fairly

standardized positions and lighting conditions (Hansen et al., 2020;

Valan et al., 2019), or may be obtained directly from bulk samples and

photographed either singly (Raitoharju et al., 2018; Valan et al., 2019;

Wührl et al., 2022) or cropped from large-field composite images

(Buschbacher et al., 2020; Hansen et al., 2020). Images thus display

different aspects of the specimens and differ in illumination and mag-

nification, which affects the recognition of key features (Ärje

et al., 2020; Raitoharju et al., 2018). The performance of a model

trained in one dataset can be compromised if this deviation of a pre-

diction target from the training source is not controlled correctly

(Torralba & Efros, 2011; Tommasi et al., 2017), and such performance

reduction has already been reported in applications for biodiversity

research (Knyshov et al., 2021; Popkov et al., 2022).

Other issues are unrelated to differences in image acquisition, but

result from the biases of defining the semantic categories or classes

recognized in the source and target domains (Tommasi et al., 2017).

Such ‘category bias’ may arise from inconsistent labelling, either due

to the application of different taxon concepts used for classifying spe-

cies and higher taxa, or due to specimen misidentification. The result-

ing noisy or incorrect data labels then reduce the effectiveness of the
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model. In addition, in particular, in higher taxonomic categories, the

same name is assigned to visually different images due to the distribu-

tional shift of subclasses (e.g., different genera representing a family in

the source and target). Furthermore, in general cross-dataset applica-

tions, the model can encounter a category which is missing in the

source training data, for example, a new family may be present. The

treatment of such anomalous (or ‘out-of-distribution’; Tabak et al.,

2019; see Table S1) samples affects the reliability of the biodiversity

assessment. As more variation is encountered, to fully learn the struc-

ture of the data, the model should scale with the size and complexity

of the training data.

In practice, due to these problems of intra-class variability and the

inconsistencies of the photographs, the success of deep learning in tax-

onomy to date has been in situations where a bespoke image library is

available that holds a narrow representation of the query taxa and

images under the same aspect and imaging conditions (brightness,

angle, magnification, etc.; Buschbacher et al., 2020; Valan et al., 2021).

In addition, the performance evaluation in these studies often has been

limited to the training–testing procedure within a single dataset, and

the generalization capability of the models across datasets was not

explicitly examined. The utility of these methods remains largely

untested in the application to samples from poorly characterized spe-

cies, as those from previously unseen bulk insect samples in unexplored

areas. Ideally, such samples would be identifiable against images drawn

from other sources, for example, an image database of well character-

ized regional communities and taxa obtained elsewhere, although mini-

mizing the adverse effects of biases in these datasets.

Here, we use deep learning approaches for classification of

insects based on bulk-sample images from high-throughput biodiver-

sity surveys, testing the possibility of domain transfer between unre-

lated image sets. We characterize bulk samples of poorly known

communities of Coleoptera (beetles) collected in different sites around

the world, whose high species diversity and complex morphological

variation provide a challenging, but realistic situation for machine-

based classification. The aim was a classification at the taxonomic

level of family, which is a frequent goal of initial identification in

world-wide biodiversity surveys where results may be used for subse-

quent specimen counts, assignment to functional groups, or further

in-depth taxonomic identification by specialists. Using a specimen

database from sites of various geographic origin globally identified at

family level, we attempt the classification of specimens in a geographi-

cally and ecologically disparate community (Cyprus). We use this

setup to address the question about the transferability of identifica-

tions across communities from different habitats and continents, that

is, when the input subclass (species and genera within a family) is not

present in the training data. Various parameters are tested that may

affect the prediction accuracy, including: (i) the size of the training set;

(ii) the complexity of the training set, which may be affected by the

level of intra-class variability, noise from misidentifications, or the

presence of out-of-distribution samples; and (iii) the quality of images,

for example, the resolution of the image using standard macrophotog-

raphy versus high-resolution stacking technology. The error from

these factors may be reduced by the use of advanced methods for

domain adaptation. We here apply one such method, the domain

adversarial neural network (DANN) algorithm, which includes unla-

beled images from the target dataset in its training process to improve

the target prediction. As we show, the use of deep learning with the

specific domain adaptation algorithm is a powerful approach for

classifying unknown samples but the prediction success depends on

the composition of the training set and may vary between classes

(i.e., some beetle families are more easily predicted).

MATERIALS AND METHODS

Sample collection and taxon selection

As the target for classification, we used a collection of leaf-litter bulk

samples from a total of 46 sites distributed across five forest habitats

of the Troodos mountain range of Cyprus (Figure 1). These samples

were processed as described by Noguerales et al. (2021) to extract bulk

Coleoptera specimens from the substrate using a Berlese apparatus.

During bulk-sample processing, a subset of individual specimens, repre-

senting all different morphospecies encountered in the samples, were

separated and processed alongside the remainder of the bulk samples.

The two sets of samples (bulk samples vs. single specimens) were pre-

served in 100% ethanol and subsequently photographed following two

different imaging protocols (LH and LL, respectively, see below). For

more details on soil sampling and habitat descriptions, see Arribas et al.

(2016) and Noguerales et al. (2021), respectively. During sample pro-

cessing and imaging, the most common families/subfamilies, with 5 or

more photographs per taxonomic rank and dataset, were identified and

used for downstream analysis. The chosen families were: Brentidae,

Carabidae, Chrysomelidae, Cryptophagidae, Curculionidae, Latridiidae,

Leiodidae, Melyridae, Ptiliidae, Staphylinidae:Scaphidiinae, Staphylini-

dae (excluding Scaphidiinae) and Tenebrionidae (Table S2).

Image data acquisition

Local high quality (LH) dataset

Bulk samples were air-dried and specimens placed at regular distances

onto filter paper in a Petri dish. In cases of large disparity in body size,

we split the bulk samples into different size categories which were

separately photographed in order to improve the focus and resolution

across all specimens regardless of their body size. As much as possible,

specimens were positioned for photography in dorsal view.

Bulk-sample photographs were taken using a Zeiss AXIO Zoom.V16

Stereo Zoom Microscope equipped with a Zeiss AxioCam HRc (High

Resolution 13 Megapixels Colour Microscope) camera at the Imaging

and Analysis Centre at the Natural History Museum (NHM) in London,

United Kingdom. This instrument has a motorized focus drive and

motorized stage for generating large high-resolution images by dividing

the field into regular tile-images that are subsequently xyz stitched.

Depending on the sample size, photographs were taken by dividing them

DEEP LEARNING FOR BIODIVERSITY IMAGING 389
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into 16–64 tiles, each with 25–30 slices (z-stacks) using the Zeiss NEO

2 Blue Edition software. We rendered z-stack images with the Helicon

Focus v.5.3.14 software (https://www.heliconsoft.com) using the

pyramid-based algorithm (‘Method C’) and default parameters. Focus

stacking was also performed using the depth-map algorithm (‘Method

B’) in Helicon Focus with a radius value of 8 and a smoothing parameter

F I GU R E 1 Schematic diagrams summarizing the experimental workflow of the study, depicting the geographical context and the different
imaging procedures for generating the three image datasets: GH, global high quality, LH, local high quality; LL, local low quality. Taxon classification
was performed using two alternative deep learning algorithms: Convolutional neural network (CNN) and domain adversarial neural network
(DANN). For more details on algorithm-specific architectures, see Figure S1.

390 FUJISAWA ET AL.
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of 4, yielding qualitatively similar images to the former method. Only

photos from ‘Method C’ were used for downstream analyses.

Finally, we manually cropped individual specimen photos from

the bulk-sample images using INSELECT v.0.1.35 software (Hudson

et al., 2015). After some minor corrections of bounding edges,

cropped single-specimen images were exported and taxonomically

identified at the family/subfamily level by the authors. Only whole-

bodied specimens were considered for further analyses. The cropped

images were resized to 255 � 255 pixels for subsequent classification

tasks. When an image was not an exact square, the edges were pad-

ded using the average pixel value of the outermost portions of the

image to enforce a square shape.

The individual frames cropped from the bulk samples were

denoted the Local High Quality (LH) data set, referring to the fact that

they were obtained from a local area and thus represent a small taxo-

nomically confined set, and taken at high image resolution. The LH

dataset represented the best-case scenario, where high-resolution

training images of local samples are obtained under controlled condi-

tions with high-performance imaging equipment. This set was the

primary target in measuring the success of transfer learning.

Local low quality (LL) dataset

A subset of single specimens (taken from the bulk samples) were indi-

vidually photographed using a conventional stereoscope NIKON

SMZ1270i equipped with a NIKON DS-Fi3 Microscope Camera (5.9

megapixels) controlled by the NIKON DS-L4 v.1.5.0.3 control unit.

These images were denoted Local Low Quality (LL) dataset. These pho-

tographs were intended to represent a more realistic scenario of local

specimens being photographed during field sampling and sample sort-

ing in local laboratory facilities using conventional instruments, and

were used to address the question about ‘capture bias’, that is, the
effect of imaging conditions on classification accuracy.

Global high quality (GH) dataset

We also obtained a wider sample of images from a global catalogue of

Coleoptera specimens available at https://www.flickr.com/photos/site-

100/. These images had been obtained from local sampling campaigns

at 11 sites throughout Central America, Africa and Southeastern Asia

(see Table S3) and photographed in bulk using the Zeiss AXIO Zoom, as

described above, although others were individually taken at high-

resolution on a single lens reflex (SLR) camera (Canon EOS 500D) and

macro lens (Canon MP-E 65 mm f/2.8 1-5x Macro). Helicon Focus soft-

ware was used to render z-stack images, as described above. This data-

set was denoted the Global High Quality (GH) dataset. For each of the

selected families, all specimen photographs available for the respective

sites were used. Relative numbers of available specimens per family

were usually correlated across sites, with greatest numbers in Staphyli-

nidae. The numbers of images in the three data sets are shown in

Table S2. The GH dataset mainly consists of samples from tropical

forest interception traps and leaf litter, and does not share lower

taxonomic groups with the target dataset sampled from Mediterranean

forest soils. These collections were the source for the test of domain

adaptation protocols applied to the unknown Cypriot target.

Image classification with neural network (NN)

Feature transfer and neural network classifier

We employed the strategy of feature transfer from the pre-trained

convolutional neural network (CNN) proposed by Valan et al. (2019).

We chose the outputs of the fifth convolutional block of the VGG19

model after 2-dimensional average pooling as a set of features for an

image, based on the results of Valan et al. (2019) and our pilot ana-

lyses. These 512-dimensional image features were used for the classi-

fication with a neural network classifier.

The neural network classifier consisted of two fully connected

(FC) layers with ReLU activation and a softmax output layer (Figures 1

and S1). The dropout was applied after the FC layers with a dropout rate

of 0.6. The neural network was trained with the stochastic gradient

descent algorithm with the softmax cross-entropy loss for 300 epochs.

We used a batch size of 10 and a fixed learning rate of 0.01, and the

convergence of loss was visually assessed. The numbers of units in the

two FC layers (512 and 256 for the first and second FC layers, respec-

tively) and the dropout rate were determined by five-fold cross-

validation with a random 200 images of the GH dataset, and these hyper-

parameters were used throughout all classification tasks in this study.

Metrics for prediction accuracy

We evaluated the performance of the models with the following met-

rics throughout the subsequent classification experiments. The accu-

racy of the prediction was measured as the proportion of successful

predictions in the test set, Acc¼ 1
n

Pn
i¼1 byi ¼ yi½ �, where byi is the pre-

dicted class of the i-th image, yi, the true class and byi ¼ yi½ � is 1 if

byi ¼ yi and 0 otherwise.

The classification performance for each class was measured by

the multiclass recall rate, multiclass precision and the F1-score (see

Table S1). Recall rate of class c is defined as a proportion of correct

predictions of c out of the actual number of images of c,

Recallc ¼
Pn

i¼1
byi¼yi
� �

yi¼c½ �
Pn

i¼1
yi¼c½ � . Multiclass precision is defined as a proportion

of correct predictions of c out of the number of images predicted as c,

Precisionc ¼
Pn

i¼1
byi¼yi
� �

byi¼c
� �

Pn

i¼1
byi¼c
� � . The F1-score is the harmonic mean of the

multiclass recall rate and precision. Thus, the recall rate is interpreted

as the fraction of images of a class present in the sample that are cor-

rectly selected, while precision quantifies the fraction of the images

predicted as members of a class that are actually correct. The

F1-score represents the overall performance of a classifier with

respect to these two measures.
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We evaluated the transferability of learning by measuring the

reduction of accuracy when a model trained with a source data set

predicts target images. The target accuracy, AccT , was measured as

the proportion of successful predictions of the target images (see

Table S1). The baseline accuracy within the source dataset, AccS, mea-

sured by the within-dataset classification was compared with AccT .

The accuracy reduction, ΔAcc S, Tð Þ¼AccS�AccT , was recorded as a

measure of transferability between the datasets. High ΔAcc indicates

large reduction of accuracy, hence difficulty in transfer.

Divergence between the source and target datasets was mea-

sured with a dataset classification error. A linear support vector

machine (SVM) was trained to classify images to the source or target

dataset with the features of 200 randomly selected images from both

datasets. Conversely to the above analyses, here the model was

trained to classify datasets instead of taxa. Then, a classification error

of the SVM, εsource�target, was measured as a proportion of incorrect

predictions of 200 test images sampled from the two datasets. An

intuitive interpretation of this measure is that the dataset classifica-

tion task is harder when the feature distributions between two data-

sets are more similar. Therefore, a large classification error indicates

high similarity between source and target datasets. This approach is

commonly used to measure the dataset bias (Tommasi et al., 2017).

Within-dataset classification

To evaluate the baseline performance, AccS, of the CNN model, we first

conducted bulk image classification within datasets (assessing the effect

of intra-class variability). This was performed by testing the number of

training images on prediction accuracy, whereby the CNN model was

trained with N images randomly selected from the dataset and predicted

the class (family label) of n test images randomly selected from the rest.

N ranged between 100 and 700 for LH (with intervals of 100 images),

between 50 and 250 for LL (with intervals of 50 images) and between

100 and 900 for GH (with intervals of 100 images). The number of test

images n was set to 200 for LH and GH, and 50 for LL due to the small

size of the dataset. To evaluate the consistency of prediction accuracy,

10 replicates were generated for each scenario of N images. The effects

of the number of images and difference of prediction accuracy between

datasets were assessed by a linear regression model.

Between-datasets classification

For the between-dataset prediction, the CNN model was trained with

a source dataset to predict images from a different target dataset. The

NN was trained with N images randomly selected from the source

dataset, which was then used to predict all images of the target data-

set and AccT and ΔAcc were measured. We ran the above procedures

for three source–target pairs (training dataset!predicted dataset),

GH!LH, GH!LL and LL!LH. These settings simulate two alternative

scenarios: (i) a global image database is used to predict local samples

(GH!LH and GH!LL) and (ii) conventional images, as those

representing single-specimen photographs by local taxonomists, are

used to predict local high-resolution images (LL!LH).

Between-datasets classification with domain adversarial
training

In addition to the standard CNN setups described above, we employed

the domain adversarial training of neural networks (DANN, Ganin

et al., 2016) which incorporates a certain portion of the unknown tar-

gets in the model. The DANN model jointly predicts the class (family

label) of the source images and the dataset (domain) of all input images

(as in the previous section) by adding layers for the dataset classifica-

tion to the classifier (Figure S1). The training procedure then optimizes

the model parameters in the shared part of the network to not only

minimize the loss of the label classifier (taxon prediction) but at the

same time to maximize the loss of the domain classifier (dataset predic-

tion). This adversarial training procedure optimizes shared intermediate

features to be invariant between the two domains, and hence the

model can generalize across them, which potentially improves the accu-

racy in target predictions. In this study, a softmax layer with binary

cross entropy loss was added as a dataset classifier to the NN after the

second FC layer. The regularization parameter, λ, which controls the

relative importance of the two classifiers, was set to λ = 0.1, 0.5 and

1.0, and the best performing results (λ = 0.1) were reported.

The performance of the DANN method was measured with pro-

cedures similar to those in the previous section. A mixed set of images

of size N was randomly selected from target and source datasets, and

training was done using taxon labels from the source images and data-

set labels for all images. Next, 400 mixed test images were predicted,

and their AccS, AccT and ΔAcc were recorded. We applied the DANN

to the three pairs from the previous section. The total number of

images N ranged between 300 and 800 for LL!LH, 400 and 1400 for

GH!LH, and 300 and 1000 for GH!LL. The proportions of source

images were 0.3, 0.67 and 0.83 for LL!LH, GH!LH and GH!LL,

respectively, which yielded training images from the source similar in

number to the other training setups. The effect of DANN on target

accuracy was tested using linear regression with the model type and

the number of images as explanatory variables. Models of neural net-

works were implemented in Python with Keras 2.5.0 (https://keras.io)

and TensorFlow 2.5.0 (https://www.tensorflow.org) libraries, and all

statistical analyses were conducted with R 4.1.0 (R Core Team, 2021).

RESULTS

Performance of within-dataset classification

Effects of datasets and the number of images

The accuracy of within-dataset classification and the effect of the

number of training images varied among datasets. The accuracy for

the LH samples of specimens collected from Cyprus generally
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improved with an increasing number of training images and reached

an average of 96% with 700 images (Figure 2a). The maximum classifi-

cation accuracy for the LH was 98%.

The within-dataset classification accuracy of the LL images, taken

by a conventional stereoscope and camera, was generally lower com-

pared to the LH dataset (9.1% lower for LL, linear regression p-value,

p < 0.001). The accuracy increased monotonically with the increasing

number of images and reached an average of 89% with 250 images

(Figure 2b). As expected, the within-dataset classification accuracy of

the GH images obtained from diverse sites around the world was sig-

nificantly lower (16% lower for GH, p < 0.001) compared to the LH

obtained from the single area of Troodos. The improvement of accu-

racy was slower than for the other datasets, and the average accuracy

was 84% with the maximum number of 900 images (Figure 2c), con-

sistent with the greater heterogeneity of the global set. Loss and

accuracy development during training of models are reported in

Figures S2, S3.

Performance of between-dataset classification

The accuracy of cross-dataset predictions was first assessed in regard

to the effect of image quality. When the LL images were used to train

the NN and then to predict the LH images, the accuracy remained

largely constant at 71% for 250 images (Figure 2b). The accuracy

reduction ΔAcc, that is, the reduction in success of predictions com-

pared to the predictions expected from within-dataset classification,

rapidly increased with the number of images (Spearman rho = 0.72,

p < 0.001), indicating that the training with LL images did not improve

the prediction of the LH images (Figure 3).

Next, we considered the critical question about the power of the

global dataset to predict the local data, using the GH and the LH as a

source–target pair. The prediction accuracy for this comparison was

close to the within-GH predictions, with the average accuracy being

79% and the maximum 82% with 900 images (Figure 2c), indicating

that the local set from the Cyprus collection (LH) behaved in a similar

way as the other local sets contributing to the GH dataset. The accu-

racy reduction from GH to LH was on average 0.04 and remained

almost constant after 300 images (rho = 0.13, p = 0.28, Figure 3). The

power of the GH dataset required the high image quality exhibited by

the target (LH); when the GH-trained model was used to predict the LL

images, the accuracy was significantly lower (Figure 2c). This was also

evident from the increased accuracy reduction with increased number

of images; whereas, the GH!GH predictions improved with more

images, the GH!LL predictions did not (Figure 3). The dataset classifi-

cation errors (εsouce-target) were 0.20 (GH!LH), 0.06 (GH!LL) and 0.01

(LH!LL), indicating high similarity between the GH and LH images and

the distinctiveness of the LL.

The performance of the domain adversarial training

The DANN significantly improved the target accuracy of the LL!LH

prediction, which involves images from the different photographic

setups (Figure 4a,b). A linear regression model showed that the target

accuracy increased by 6.2% (p < 0.001, Figure 4b) and the accuracy

reduction decreased by 0.060 when the DANN model was used with

labelled LL and unlabeled LH images (Figure 3). The average target

accuracy was 79% with 200 labelled LL images and 400 unlabelled LH

images (Figure 4b), approaching the same level of accuracy as GH!LH

predictions.

On the contrary, the DANN did not improve the target accuracy

when the GH was used as a source dataset (Figure S4 and S5). The

GH!LH target accuracy was on average 0.75 with 940 labelled GH

images and 460 unlabelled LH images (in total 1400 images), and over-

all target accuracy was significantly lower than the between-dataset

(a) (b) (c)

F I GU R E 2 Effect of increasing the number of training images on prediction accuracy. Training the convolutional neural network (CNN) on a
subset of images and prediction of the class (family label) of images. (a) Local high quality (LH) images for training and predicting the class of LH
images, (b) local low quality (LL) images for training and predicting the class of either LL or LH images and (c) global high quality (GH) images for
training and predicting the class of either LL, LH or GH images.
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predictions by the plain NN model (2.2% reduction for DANN,

p = 0.0002, Figure S4). In the GH!LL prediction, a similar trend was

observed (Figure S5) and the target accuracy was not significantly dif-

ferent from the NN (0.015% reduction for DANN, p = 0.98). Loss and

accuracy development during training of models are reported in

Figures S2, S3.

Classification error

Classification error was visualized as a scaled confusion matrix. Starting

with a trial for a within-dataset analysis with 400 training images in the

LH random sampling showed that the large taxonomic groups were cor-

rectly classified in most cases (Table S4). For example, four families

(Carabidae, Curculionidae, Ptiliidae and Staphylinidae) were classified

with more than 95% recall rate, although the remaining taxa had widely

different recall rates ranging from 0% to 82% (Figure 5a). In the

extreme case of the family Melyridae, with the lowest number of avail-

able images (n = 5), no images were predicted correctly (Figure 5a).

When a taxon had >50 images, its recall rate and precision approached

1.0 (Figure 5a,c). The F1-scores showed a similar pattern, that is, for

those images that were called to be members of a taxon, these predic-

tions were generally correct (Figure 5e). Class-wise recall rates and

F1-scores showed a strong positive correlation with the number of

images (recall rates: rho = 0.81, p = 0.0014; F1-scores: rho = 0.85,

p = 0.0005; Figure 5a,e). The effect of the number of images on the

class-wise precision was also positive, but slightly weaker (rho = 0.41,

p = 0.187, Figure 5c). Failed predictions included ventral views of

insect bodies, specimens with missing body parts or multiple specimens

in a single image (see Figure S6). Apart from these irregular images,

most failed predictions were for taxa represented by <20 images

(Figure 5a,c,e). Prediction probabilities for the successful predictions

(average 0.98) were overall higher than for the failed predictions (aver-

age 0.79, Figure 6a), when using the LH dataset with 400 training

images.

For the between-dataset analysis, a confusion matrix of the

GH!LH prediction trained on 800 images equally showed a high accu-

racy of predictions (Table S5). Misclassification mostly affected mor-

phologically similar taxa, for example, the reciprocal confusion of

Brentidae and Curculionidae (Table S5). Chrysomelidae, Curculionidae

and Staphylinidae had recall rates >0.90 (Figure 5b), but more taxa

were incorrectly classified than in the case of the LH!LH prediction.

No image of Leiodidae and Scaphidiinae, with the available training

images <50, was predicted correctly (Figure 5b).

The success of the class-wise recall rates was strongly correlated

with the number of images in the source dataset (rho = 0.77,

p = 0.0036, Figure 5b). Three taxa with >300 images had recall rates

>0.95, although the taxa with <40 images had recall rates <0.4

(Figure 5b). The effect of the number of images on the class-wise pre-

cision and F1-score was also positive, but the effects were not signifi-

cant (class-wise precision: rho = 0.16, p = 0.618; F1-score:

rho = 0.42, p = 0.171; Figure 5d,f). Surprisingly, the F1-scores were

greatly reduced relative to the recall score for the Chrysomelidae,

indicating the precision of the prediction was low even if the recall

was high (Figure 5d,f), that is, the true Chrysomelidae were correctly

classified, but many other taxa were incorrectly classified as

Chrysomelidae.

Prediction probabilities and out-of-distribution
samples

In order to test the effect of the presence of unknown inputs (out-of-

distribution samples) on the classification, we first used an LH-trained

model to predict the class of 16 LH images belonging to eight families/

subfamilies, Coccinellidae, Elateridae, Endomychidae, Hydrophilidae,

Laemophloeidae, Phalacridae, Scarabaeidae and Scydmaeninae, which

were not present in the training data, but were present in the target

sample (Cyprus) in small numbers. For these images, the (incorrect)

prediction probabilities were also lower on average than for the

F I GU R E 3 The effect of increasing numbers of training images on
the accuracy reduction in across-dataset predictions. Subsets of
randomly selected images of one dataset are used for training and
predicting the class (family label) of another set, as indicated by
different colours. Lines in light blue refer to the comparison involving
tests of locality, that is, when using global high quality (GH) images for
training and predicting the class of local high quality (LH) images. Lines
in green refer to comparisons involving tests of image quality, that is,
when using local low quality (LL) images for training and predicting the
class of local high quality (LH) images. Lines in dark blue refer to
comparisons involving differences in both locality and image quality,
that is, when using global high quality (GH) images for training and
predicting the class of local high quality (LL) images. The x-axis
representing the number of training images is on a logarithmic scale.
The vertical dotted bars indicate 95% confidence interval of the
average accuracy reduction. Higher accuracy reduction indicates a
worse performance on prediction compared to the within-dataset
prediction accuracy. The solid and dashed lines represent results of
the convolutional neural network (CNN) and domain adversarial
neural network (DANN), respectively. Note that only the LL to LH
prediction accuracy improved with the use of DANN.
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successful predictions (average 0.83, Figure 6a). However, four sam-

ples were predicted with high probabilities of >0.95, including three

images of Coccinellidae, Hydrophilidae and Phalacridae that were

classified as Ptiliidae (Figure 6a).

A similar test was also conducted for the between-dataset classi-

fications by using a GH-trained model to predict LH images. Similar to

the within-dataset classification, average prediction probabilities of

successful predictions (0.98) were consistently higher than the failed

predictions (0.84) and out-of-distribution samples (0.77). However,

failed predictions more frequently had probabilities >0.95 than the

out-of-distribution samples (Figure 6b).

For both tests involving the within- and between-dataset predic-

tions, to detect the failed predictions, we set conservative threshold

values for the prediction probabilities and marked samples below the

threshold as potential misclassification. When the threshold value was

set to 0.95, 92% of successful predictions were retained while 76% of

failures and 75% of out-of-distribution samples were correctly

detected as misclassifications (Figure 6a,b).

(a) (b)

(c) (d)

F I GU R E 4 Effect of the number of images on prediction accuracy of the convolutional neural network (CNN, panels a and c) and the domain
adversarial neural network (DANN, panels b and d) training for the local low quality (LL) and local high quality (LH) images. Top panels (a and b)
represent between-dataset predictions (LL!LH) and bottom panels (c and d) indicate within-dataset predictions (LL!LL). Solid lines represent
regression lines between the number of images and accuracy. For both between- and within-dataset predictions, models using DANN were
trained with a mixed set of randomly selected images from the LL and LH datasets. For other dataset comparisons, see Figures S3 and S4.
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F I GU R E 5 Effect of the increasing number of images on recall rates (panels a and b), multiclass precision (panels c and d) and F1-scores
(panels e and f). We used 400 randomly selected local high quality (LH) images for training and predicting the class (family label) of LH images
(within-dataset classification) (left panels), and 800 randomly selected global high quality (GH) images for training and predicting the class of LH
images (right panels). Note that x-axes representing the number of images are on a logarithmic scale. Circle sizes represent the number of
countries where samples of a given family were collected from (as a proxy of intra-family morphological variation).
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DISCUSSION

This work adds to the growing number of studies demonstrating the

power of CNNs in image-based taxonomic classification. Specifically,

we tested the possibility of classifying specimens from bulk samples

of beetles, whereby unknown local samples were classified using a

model trained on similarly photographed bulk samples from a global

set. We envision that mixed trap samples in future will be routinely

photographed with high-resolution cameras, producing huge numbers

of valuable images, but unlike most existing studies that use pinned or

cardboard-glued specimens, these images present specimens in

diverse angles, habitus, magnification and lighting (Schneider

et al., 2022; Wührl et al., 2022). We show that these images provide

sufficient information for specimens to be identified as members of

particular families of Coleoptera. This finding is of special relevance in

the context of large-scale biodiversity surveys where higher-rank tax-

onomic classification arises as a mandatory first-step prior to more

refined classification by expert taxonomists (Karlsson et al., 2020).

Within a local dataset, classification accuracy regularly reached 95%

or more, which is similar to findings from other studies using more

standardized photographs from museum collections (e.g., �92% and

96% for Diptera and Coleoptera, respectively; Valan et al., 2019). We

also confirm that classification performance depends on the number

of images used for training (Figures 2–5), as widely seen in image rec-

ognition applications generally (Donahue et al., 2013) and in insect

classification in particular (e.g., >90% recall rates were obtained for

taxa with >50 images; Valan et al., 2019, 2021). We find that the pre-

diction accuracy generally does not increase further after about

200 images in each of the three datasets used here. However, the

degree of accuracy is greatly affected by the image quality and the

complexity of the dataset: both the LL (low image quality) and in

particular the GH (high complexity) datasets show comparatively lower

accuracy of predictions if trained on themselves.

Utility of global databases for classifying local faunas

The critical question in this study is about the success of transfer

learning in a situation where the source and target data are from dif-

ferent faunas. We here used the challenging case of the soil fauna of

a Mediterranean island as the domain target for images trained on a

set of mixed trap samples from altogether 11 tropical forest sites

across the globe (the GH set), which presumably do not share any spe-

cies or genera. However, most local bulk samples, even from such dis-

parate ecosystems, share a similar set of taxa at the family level,

especially for a few species-rich families which are found in similar rel-

ative proportions in most samples. The complexity of the data may

allow the CNN model trained on this broad set to capture general

family traits of the global fauna and thus make it suitable for a greater

range of classification tasks at local level. However, this broad scope

comes at a certain price, as the source accuracy is fairly low (compar-

ing the GH!GH with the LH!LH, Figure 2), but if we accept the

slightly lower accuracy, our study confirms the possibility of classify-

ing local samples against this global set. We conclude that it is not

strictly necessary to create local reference databases for training,

when targeting higher taxonomic levels. This finding opens the way

for local biodiversity assessment studies around the globe using a uni-

versal training set. Global databases have the additional advantage of

offering high numbers of images per taxon, which is more difficult to

obtain locally, although it is critical for increasing the performance of

the CNN-based classification (Figure 2; Donahue et al., 2013; Valan

et al., 2019, 2021).

(a) (b)

F I GU R E 6 Prediction probabilities for the successful, failed and out-of-distribution predictions at a 0.95 threshold (horizontal line). (a) Intra-
dataset predictions of LH images using 400 randomly selected images for training. (b) Predictions of LH images using 800 GH images for training.
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Despite the high prediction accuracy of the dataset as a whole,

some taxa may show consistently lower classification performance. The

primary factor affecting recall and precision is the number of images per

family. The required quantity was available only for the largest families

(which were also available for the greatest number of countries globally,

as a measure of complexity of the training set). The fact that most taxa

accumulate fewer single-specimen photographs as a result of rarity and

low abundances, may be artificially addressed by data augmentation

techniques, which have been successfully applied to specimen identifi-

cation tasks (Klasen et al., 2022). However, a few taxa, including the

widely sampled Chrysomelidae, showed low F1-scores even with a large

number of images (Figure 5b,d,f). This example is particularly striking

because of the high recall rate, but low precision, that is, although most

specimens of Chrysomelidae in the sample are identified with a high

prediction probability, the model misclassifies a lot of them and incor-

rectly assigns specimens of other families to them. The Chrysomelidae

behaves poorly against the local LH model, but this is commensurate

with a low representation of images (Figure 5a,c,e). The finding may sug-

gest a negative impact of within-family morphological disparity on classi-

fication precision, possibly only present in the wider GH dataset.

Interestingly, Chrysomelidae also showed low classification performance

in the study of Valan et al. (2019). The family is composed of morpho-

logically rather distinct subfamilies, and an increased number of images

may help to unveil the subclasses generating low performance models.

Lessons from combining DANN with differing
databases

We show that photographs taken from similar imaging setups (GH and

LH) are readily used for between-region image classifications although

images taken by a conventional stereoscope (LL) exhibited a large

accuracy reduction for the prediction of the local high-quality dataset.

Considering the nearly identical taxonomic composition of the LH and

LL datasets, the large accuracy reduction indicates a negative impact

of the original image quality and the lack of standardization between

the target–source pairs. The overall dissimilarity of LH from GH and LL

measured by dataset classification errors also suggest a negative

effect of non-standardized imaging on prediction performance. These

results are in accordance with the reduction in classification accuracy

observed by other studies comparing different imaging procedures,

for example, training with high-resolution museum specimens to pre-

dict field images (Knyshov et al., 2021). The application of alternative

algorithms may overcome limitations resulting from the usage of

highly different images taken by unstandardized imaging conditions.

In the current study, we could successfully ameliorate the accuracy

reductions between LH and LL using DANN, a method designed for

improving domain adaptation (Ganin et al., 2016). However, in other

combinations of datasets such as GH and LH, the DANN did not

improve the target prediction performance. This may be due to poor

hyperparameter tuning or insufficient training of the model with a

complex loss function (Kouw & Loog, 2021). Nevertheless, our study

would offer some evidence that DANN (or domain adaptation

techniques in general) can be considered a method of choice when a

standardized image acquisition is not available.

Improvements from using alternative metrics for
model performance

Although CNN-based image classification for biodiversity assessment

is becoming increasingly popular, its performance is not always

assessed with a broad set of performance metrics. As observed in

Chrysomelidae, the reduction of performance was only detectable in

the multiclass precisions and F1-scores, but not in the recalls, which

revealed a specific difficulty in the classification of this group. Given

the inferential power of these performance metrics, we encourage

their integration in biodiversity-related applications.

Another overlooked metric is the confidence of predictions. We

could detect failed predictions and potential out-of-distribution sam-

ples by setting a threshold value on the probabilities. In accordance

with Hendrycks and Gimpel (2017), such misclassified or out-of-

distribution samples were predicted with consistently lower predic-

tion probabilities. Because out-of-distribution samples are common in

biodiversity surveys, detection of unknown target samples based on

low prediction confidence is particularly useful. A potential difficulty

of this approach is that calibration of the threshold requires extra

data. Conventional deep neural networks can be uncalibrated, that is,

prediction probabilities do not precisely reflect prediction accuracy

(Guo et al., 2017). Such uncalibrated models can make an incorrect

prediction with excessively high confidence. This overconfident failure

is noticeable in our analysis (Figure 6b). Therefore, additional labelled

samples are required to set a robust threshold for the identification of

failure and out-of-distribution samples. Methods for explicit calibra-

tion of prediction probabilities or detection of out-of-distribution

samples without additional data (e.g., Hsu et al., 2020; Mukhoti

et al., 2020) are being actively developed in the machine learning field,

and applying those methods is a potential future direction. As DANN

could remove the dataset biases caused by the imaging instruments,

the purpose-specific models will expand the possibility of machine

learning applications to biodiversity surveys (see Høye et al., 2021).

Building the global database for CNN-based
classification

As new images become available for ever more species, the reference

library for taxonomic identification is rapidly growing. Given the geo-

graphic and taxonomic distance of our reference set from tropical for-

ests, the family category is the only meaningful level exhibiting

overlap of source and target, but conceivably the methodology could

be applied at lower levels, for example, genera, if more similar samples

had been used. The current set of images is limited with regard to the

number of families (classes) and number of images per family (intra-

class variability), resulting in out-of-distribution errors and prediction

errors, respectively. Both issues can be addressed with a wider
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selection of images, for example, those available from the SITE-100

project (Bian et al. 2022) taken with similar equipment. Based on our

results, any future image collection should consider the need for stan-

dardization, including that imaging should use the same aspect, for

example, dorsal view for Coleoptera (also see Hansen et al., 2020), uni-

form background across images (preferably a light colour without tex-

ture), clear separation of specimens in the photographs, and similar

optical equipment and magnification. The exact parameters remain to

be explored within and across studies, but standardization of imaging is

critical to transferability when rolling out large-scale efforts for image-

based classification in biodiversity studies. As part of this effort, image

segmentation should be improved and automated (Schneider

et al., 2022; Schwartz & Alfaro, 2021), to increase our capability for rap-

idly generating ‘clean’ and individual-based image databases extracted

from bulk samples. A potential bottleneck is the need to expand the

training set gradually, which generally requires recomputation of the

model when new classes are added, although recent updated methods

may simplify this process (Hadsell et al., 2020). A second issue affecting

the accuracy of predictions is the ‘category bias’ from inconsistent

categorisation and labelling of the training set itself. In the current

study, images in the training set were classified from the images by rec-

ognizing the overall gestalt of a family. These family labels were

straightforward for most groups, but identification of some beetle fami-

lies may be compromised due to images that obscured appendages or

other key traits, especially in small-bodied Leiodidae, Latridiidae or

Cryptophagidae, which may have contributed to the prediction errors

seen in these families (Table S4). Thus, corrections to the family labels

in the database may be required, possibly by DNA barcoding and phylo-

genetic placement methods that confirm the family membership. Like-

wise, combining image acquisition for biodiversity assessment with

metabarcoding could be instrumental for validating or improving

genetic-based inferences (Yang et al., 2022) or estimating biomass and

abundance (e.g., Høye et al., 2021; Schneider et al., 2022). Metabarcod-

ing studies often lose morphological information of specimens, but

imaging could be accommodated as a routine step before the DNA

extraction of bulk insect samples.

CONCLUSIONS

To our knowledge, this is the first attempt of domain adaptation for tax-

onomic classification of an entirely unknown dataset, as a key element

of using image-based identification in biodiversity studies at the global

scale. We show that the approach is highly feasible, but needs careful

consideration of the imaging procedure, the algorithmic approach and

the choice of training sets. We envisage that an increasingly complete

set of images, covering the diversity of major taxonomic groups, will

become available as a global database in future, against which samples

from any ecosystem and biogeographic region can be classified at a cer-

tain hierarchical level (e.g., families of beetles). In our approach, we lack

the close alignment of the feature space in source and target that would

guarantee high transferability, albeit at the expense of lower generaliza-

tion capability when encountering unknown samples.

Further studies are required to assess the trade-offs of broaden-

ing the source domain and to establish best practice for the specific

research question at hand. Once a stable expanded image database

has been created, it can be used for wider applications in biodiversity

research and monitoring, potentially building a global model applicable

to any sampling site and possibly used while still in the field.
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