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Abstract
Disentangling the relative role of environmental filtering and spatial processes in driv-
ing metacommunity structure across mountainous regions remains challenging, as 
the way we quantify spatial connectivity in topographically and environmentally het-
erogeneous landscapes can influence our perception of which process predominates. 
More empirical data sets are required to account for taxon-  and context- dependency, 
but relevant research in understudied areas is often compromised by the taxonomic 
impediment. Here we used haplotype- level community DNA metabarcoding, enabled 
by stringent filtering of amplicon sequence variants (ASVs), to characterize metacom-
munity structure of soil microarthropod assemblages across a mosaic of five forest 
habitats on the Troodos mountain range in Cyprus. We found similar β diversity pat-
terns at ASV and species (OTU, operational taxonomic unit) levels, which pointed to 
a primary role of habitat filtering resulting in the existence of largely distinct meta-
communities linked to different forest types. Within- habitat turnover was correlated 
to topoclimatic heterogeneity, again emphasizing the role of environmental filtering. 
However, when integrating landscape matrix information for the highly fragmented 
Quercus alnifolia habitat, we also detected a major role of spatial isolation determined 
by patch connectivity, indicating that stochastic and niche- based processes synergis-
tically govern community assembly. Alpha diversity patterns varied between ASV and 
OTU levels, with OTU richness decreasing with elevation and ASV richness following 
a longitudinal gradient, potentially reflecting a decline of genetic diversity eastwards 
due to historical pressures. Our study demonstrates the utility of haplotype- level 
community metabarcoding for characterizing metacommunity structure of complex 
assemblages and improving our understanding of biodiversity dynamics across moun-
tainous landscapes worldwide.

www.wileyonlinelibrary.com/journal/mec
mailto:
https://orcid.org/0000-0003-3185-778X
http://creativecommons.org/licenses/by/4.0/
mailto:victor.noguerales@csic.es
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.16275&domain=pdf&date_stamp=2021-11-24


    |  6111NOGUERALES Et AL.

1  |  INTRODUC TION

Understanding the drivers of metacommunity structure across het-
erogeneous landscapes remains a fundamental question in ecology 
(Meynard et al., 2013; Viana & Chase, 2019). Under a niche selec-
tion perspective (Chase & Leibold, 2003; Hutchinson, 1959) meta-
community structure results from species sorting via environmental 
filtering, while under the neutral archetype (Chase, 2005; Hubbell, 
2001) metacommunities are structured by stochastic dispersal and 
ecological drift. These processes are not mutually exclusive, as their 
relative importance in community assembly varies along a niche– 
dispersal continuum (Brown et al., 2017; Cottenie, 2005; Gravel 
et al., 2006). Scale dependency has been suggested to affect the 
perception of which process predominates, with environmental fil-
tering prevailing at larger spatial scales and the role of stochastic 
processes increasing at finer scales (Viana & Chase, 2019). Yet, the 
apparent prevalence of environmental over spatial processes at re-
gional scales (Chase, 2014) could be biased by the tendency of most 
metacommunity studies to quantify spatial isolation as a simple 
function of geographical distance (Biswas & Wagner, 2012), with-
out considering landscape features such as topography or matrix 
heterogeneity. Accounting for matrix resistance when quantifying 
connectivity (McRae et al., 2008) may enforce the role of spatial pro-
cesses as the primary driver of metacommunity structure (Resasco & 
Fletcher, 2021). This is particularly relevant when focusing on mon-
tane regions, where spatial connectivity among habitat patches can 
be strongly influenced by high topographic complexity and environ-
mental heterogeneity due to steep elevational gradients (Graf et al., 
2007; Liu et al., 2018). At the same time, elevational gradients in to-
poclimatic parameters such as temperature or precipitation can im-
pose strong environmental filtering on montane metacommunities 
(Hoiss et al., 2012; Leingärtner et al., 2014) and are often considered 
to drive patterns of species richness (Peters et al., 2016; Rahbek, 
1995) and community uniqueness (Wang et al., 2020) at regional 
scales. As montane communities are rapidly changing due to rising 
temperatures and anthropogenic disturbance (Rahbek et al., 2019; 
Steinbauer et al., 2018), it is crucial to gain a better understanding 
of how elevation and landscape mediate the interplay between en-
vironmental filtering and spatial processes as drivers of metacom-
munity structure across mountainous regions (Gálvez- Reyes et al., 
2021).

Disentangling the drivers of metacommunity structure requires 
comprehensive empirical data sets from different functional groups, 
geographical regions and landforms, as the relative importance of 
spatial and environmental constraints is expected to be taxon-  and 
context- dependent (He et al., 2020; Tonkin et al., 2018). It is thus 
difficult to extrapolate conclusions from the limited number of well- 
characterized montane metacommunities that have been studied to 

date (Benito et al., 2018; Brodie & Newmark, 2019; Tonkin et al., 
2017). More empirical studies from a diversity of montane biota 
across the globe are required to understand what general principles 
may be at play. Expanding metacommunity research to understud-
ied geographical areas, and/or poorly known taxonomic groups, 
is complicated by the “taxonomic impediment” (Cicconardi et al., 
2013; Young et al., 2019). The development of metabarcoding pro-
vides new opportunities to accelerate studies on metacommunity 
structure across underexplored fractions of biodiversity and greatly 
increases their taxonomic resolution (Arribas, Andújar, Salces- 
Castellano, et al., 2021; Bush et al., 2020; Martin et al., 2021; Zinger 
et al., 2019). Recent advances in field, laboratory and bioinformatic 
protocols for community metabarcoding have led to improvements 
in both the efficiency for the generation of such high- resolution tax-
onomic inventories (Arribas et al., 2016; Elbrecht et al., 2018), and 
the reliability of α and β diversity estimates (Andújar et al., 2018; 
Creedy et al., 2019). New bioinformatic tools for the removal of 
noise generated by amplification and sequencing errors (Callahan 
et al., 2016; Edgar, 2016) and the filtering of spurious sequences re-
sulting from co- amplification of nuclear mitochondrial pseudogenes 
(Andújar et al., 2021) allow us to move beyond classical OTU (opera-
tional taxonomic unit) clustering and define haplotype- level entities, 
or amplicon sequence variants (ASVs; Callahan et al., 2017). While 
OTUs are traditionally considered as proxies of species- level entities, 
ASVs represent haplotypes with intrinsic biological significance and 
offer the possibility for direct comparisons among studies that use 
the same marker (Callahan et al., 2017; Porter & Hajibabaei, 2020), 
potentially improving community diversity estimates (Joos et al., 
2020). The availability of reliable whole- community ASV and OTU 
data sets allows comparisons of spatial structure at haplotype and 
species levels, which can provide insights into the prevalence of sto-
chastic vs. niche- based processes in community dynamics, as similar 
diversity patterns at both levels are predicted under neutral scenar-
ios (Baselga et al., 2015; Papadopoulou et al., 2011). All the latest 
advances in the field of community metabarcoding are expected to 
lead to a better understanding of species diversity and community 
processes, particularly in historically intractable habitats, such as the 
soil (Arribas, Andújar, Salces- Castellano, et al., 2021).

Soil biodiversity is among the most complex and poorly known 
terrestrial biotas on Earth (Decaëns, 2010). The high structural 
complexity and heterogeneity of the edaphic environment are 
thought to facilitate species coexistence and drive patchy distri-
butions of soil organisms at multiple spatial scales (Berg, 2012; 
Thakur et al., 2020), providing a particularly interesting template 
for metacommunity studies. Soil microarthropods, including the 
highly abundant and diverse groups of Acari, Collembola and 
Coleoptera, represent a major component of below- ground com-
munities, with a broad range of functional roles in soil ecosystem 
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services (Nielsen, 2019) and high levels of cryptic diversity (e.g., 
Cicconardi et al., 2013; Young et al., 2019). Recent metabarcoding 
studies (Arribas, Andújar, Salces- Castellano, et al., 2021; Zinger 
et al., 2019) have revealed an important role of stochastic pro-
cesses and dispersal limitation in community assembly of soil mi-
croarthropods at the within- habitat scale, in contrast to previous 
research that had emphasized environmental filtering in response 
to soil attributes as a major driver of community composition 
(Caruso et al., 2012, 2019; Gao et al., 2016). Metabarcoding data 
also support relatively low dispersal rates (Zinger et al., 2019) 
and high turnover of soil microarthropod assemblages even 
within short geographical distances (Arribas, Andújar, Salces- 
Castellano, et al., 2021), despite suggestions that long- distance 
passive dispersal might be prevalent in these small- bodied groups 
(Schuppenhauer et al., 2019; Türke et al., 2018). It remains to be 
assessed whether those differences among studies are due to 
the higher taxonomic resolution offered by metabarcoding, or 
are due to context-  or scale- dependent variation among systems 
(Berg, 2012; Ferrenberg et al., 2016). What both metabarcoding 
and morphology- based studies agree on is that habitat type can 
impose a strong filtering effect overriding other environmental 
and spatial processes, with forest vs. grassland habitats harbour-
ing largely distinct metacommunities (Arribas, Andújar, Salces- 
Castellano, et al., 2021; Caruso et al., 2012; Rota et al., 2020). Yet 
equivalent comparisons among more structurally similar habitats 
(e.g., different forest types) remain limited.

Here we use whole- organism community DNA (wocDNA, 
Creedy et al., 2021) metabarcoding at both OTU and ASV levels to 
characterize soil microarthropod assemblages (Acari, Collembola 
and Coleoptera) across an isolated montane forest mosaic and 
evaluate the relative importance of forest type, topoclimatic 
variation and spatial/landscape factors in driving metacommu-
nity structure. The Troodos mountain range (hereafter Troodos) 
harbours unique and understudied Mediterranean forest habitats 
within the island of Cyprus, one of Europe's islands most vulnera-
ble to climate change (Vogiatzakis et al., 2016), and a major compo-
nent of the Mediterranean biodiversity hotspot due to high levels 
of endemicity (Medail & Quezel, 1997). Troodos is characterized 
by complex topography and steep environmental gradients which, 
in combination with anthropogenic disturbance since ancient 
times (Delipetrou et al., 2008), have created a mosaic consisting of 
five main forest habitat types that differ in area, altitudinal range 
and level of fragmentation (Figure 1). These comprise forests of: 
(i) the narrow endemic Cyprus cedar— Cedrus brevifolia (Cb), with a 
highly restricted distribution (~300 ha, between 900 and 1400 m) 
in Western Troodos; (ii) the endemic golden oak— Quercus alnifolia 
(Qa), with a broad (~20,000 ha, 700– 1700 m) but highly fragmented 
distribution across Troodos; (iii) black pine— Pinus nigra pallasiana 
(Pn, ~3500 ha, 1450– 1950 m) and (iv) stinking juniper— Juniperus 
foetidissima (Jn, ~250 ha, 1450– 1950 m), both narrowly distrib-
uted at the top of the highest peak (Chionistra, 1952 m) in Central 
Troodos; and finally (v) Calabrian pine forest— Pinus brutia (Pb) the 
dominant habitat type, forming continuous and extensive forests 

across Troodos (~90,000 ha, 400– 1400 m). We generate metabar-
code data for soil microarthropods across this habitat mosaic ma-
trix to address the following questions: (i) Is forest habitat type 
the primary factor shaping metacommunity structure, in a similar 
way to that seen between grassland and forest? (Arribas, Andújar, 
Salces- Castellano, et al., 2021; Caruso et al., 2012). (ii) What is 
the relative contribution of spatial vs. environmental processes 
as drivers of within- habitat metacommunity structure? (Zinger 
et al., 2019). (iii) Focusing on the endemic Q. alnifolia habitat, 
which is highly fragmented across Troodos, does habitat connec-
tivity across the heterogeneous landscape play an important role 
in metacommunity structure? (Resasco & Fletcher, 2021). Finally, 
(iv) are α and β diversity patterns obtained using ASVs and OTUs 
equivalent and explained by similar spatial or topoclimatic factors? 
Apart from elucidating soil biodiversity dynamics in those poorly 
studied but highly vulnerable and precious Mediterranean forests, 
this system can provide insights into the utility of high- resolution 
community metabarcoding, in combination with fine- scale topo-
climatic and landscape matrix information, for disentangling the 
drivers of metacommunity structure across mountainous regions 
and complex landscapes.

2  |  MATERIAL S AND METHODS

2.1  |  Soil sampling and sample processing

During 2019, from mid- April to mid- June, we collected soil sam-
ples from 44 sites representing the main five forest habitat types 
of the Troodos mountain range (described above, Figure 1; Table 
S1). Our sampling scheme covered the full extent of the distri-
bution and altitudinal range that the five tree species exhibit on 
Troodos, spanning over 65 km along an east– west axis and 1500 m 
of elevation range (Figure 1; Table S1). We collected two soil sam-
ples per sampling site corresponding to the superficial (1 m2 of 
leaf litter and humus, 5 cm depth) and the deep layer (30 cm diam-
eter, 30 cm depth, comprising ~20 L of soil) as described in Arribas, 
Andújar, Salces- Castellano, et al. (2021). The 88 soil samples were 
subsequently processed using a standardized flotation– Berlese– 
flotation protocol to extract the soil mesofauna as detailed in 
Arribas et al. (2016), Arribas, Andújar, Salces- Castellano, et al. 
(2021). Once retrieved, each mesofauna sample was submitted 
to a final cleaning procedure, which involved flotation and pos-
terior filtering using two sieves of 1- mm and 41- μm mesh. This 
protocol allows discarding unwanted soil components (sediments 
and vegetal remains) while retrieving two subsamples of bulk ar-
thropod specimens, retained in each sieve according to their body 
size (typically Acari and Collembola vs. Coleoptera), which are 
suited for “clean” extraction of wocDNA (Arribas, Andújar, Salces- 
Castellano, et al., 2021). During bulk- sample processing, we ad-
ditionally selected “voucher” specimens of Acari, Collembola and 
Coleoptera representing the whole range of morphological vari-
ability of these groups observed across samples and habitats. A 
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total of 176 bulk subsamples and 344 “voucher” specimens were 
preserved at −20°C in 100% ethanol for molecular analyses.

2.2  |  DNA extraction, PCR 
amplification and sequencing

We extracted DNA from each bulk subsample using the Biosprint 
96 DNA Blood Kit (Qiagen) on a Thermo KingFisher Flex automated 
extraction instrument. We quantified the DNA concentration using 
a NanoDrop spectrophotometer and combined the extracts of 
each pair of subsamples at a 1:10 ratio (Arribas, Andújar, Salces- 
Castellano, et al., 2021). Then, we PCR (polymerase chain reaction) 
amplified the 3′ end of the cytochrome c oxidase subunit I (COI) 
barcode region corresponding to the 418- bp bc3′ fragment using 
primers Ill_B_F (Shokralla et al., 2015) and Fol- degen- rev (Yu et al., 
2012). Amplifications were performed following the PCR conditions 

described in Arribas et al. (2016). We carried out independent PCR 
replicates using as template two different DNA dilutions (1:10 and 
1:100). PCR products were visualized on agarose gel and three 
amplicons (including two PCR replicates of the 1:10 DNA template 
dilution and one PCR replicate of the 1:100 DNA template dilution) 
were pooled per sample, which were purified using a magnetic bead- 
based protocol (Agencourt AMPure XP). We included three negative 
controls corresponding to different wet- laboratory steps (lysis, DNA 
extraction and PCR amplification). The 88 metabarcoding samples 
and the three negative controls were used for a dual- indexed library 
preparation following the Nextera XT DNA workflow (llumina) and 
were sequenced on a paired- end 2 × 300- bp lane of an Illumina 
MiSeq platform at the Earlham Institute (Norwich, UK).

We individually extracted DNA from each of the “voucher” 
specimens as described above. We amplified Folmer's COI barcode 
region (658- bp, overlapping with the 418- bp metabarcoding frag-
ment), using the primers Fol- degen- for and Fol- degen- rev (Yu et al., 

F I G U R E  1  Geographical location of sampling sites throughout the Troodos mountain range in Cyprus (top panel) and distribution of 
the main five forest habitat types (bottom panel). Sampling sites and forest habitat distribution are coloured as follows: Pb, Pinus brutia 
(light green); Qa, Quercus alnifolia (orange); Cb, Cedrus brevifolia (blue); Pn, Pinus nigra (black); Jn, Juniperus foetidissima (purple). Top panel: 
background map displays elevation at 90- m resolution (SRTM Digital Elevation Data, http://srtm.csi.cgiar.org/). Bottom panel: data from the 
Department of Forests (Ministry of Agriculture, Rural Development and Environment, Republic of Cyprus; https://www.data.gov.cy/). Green 
hatched areas represent zones where P. brutia (light green) forests are present according to our own surveys but whose extent has not been 
mapped in the publicly available cartography, probably because they are the result of plantations, have been affected by fires and/or present 
very low tree densities
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2012) and following the PCR conditions described in Arribas et al. 
(2016). The PCR products were purified and bidirectionally Sanger 
sequenced (Macrogen). These “voucher” sequences were used for 
constructing a local reference database, which allowed us (i) to im-
prove the higher- rank taxonomic assignment of the metabarcode 
reads and thus maximize the number of ASVs retained for each of 
the three taxonomic groups and (ii) to apply a recently developed 
method for read filtering (metamate, Andújar et al., 2021, see below).

2.3  |  Illumina read processing and filtering

Detailed information on the read processing and filtering pipeline is 
summarized in Table S2. Briefly, we demultiplexed raw reads allow-
ing no mismatch in the dual- index pair. Then, we used fastqc ver-
sion 0.11.7 (Andrews, 2010) to quality check raw reads and cutadapt 
version 2.10 (Martin, 2011) to trim primers and filter out raw reads 
exhibiting any variation from expected primer length and composi-
tion. Subsequently, we used pear version 0.9.11 (Zhang et al., 2014) 
to merge forward and reverse reads. Each metabarcoding sample 
was then separately quality filtered, dereplicated discarding single-
tons, length filtered retaining only reads 416– 420 bp, denoised using 
unoise3 and de novo chimera filtered using uchime3 as implemented 
in vsearch version 2.9.1 (Rognes et al., 2016). Once denoising was 
performed, reads from all metabarcoding samples were pooled and 
again dereplicated (discarding no sequences) to generate a catalogue 
of unique putative haplotypes (ASVs). Subsequently, we ran blast to 
compare all ASVs against a combined database composed of the 
NCBI nt collection (accessed November 2020) and a curated refer-
ence catalogue including the 344 Sanger sequences of the “voucher” 
specimens plus 561 previously available sequences corresponding 
to soil lineages of Acari, Collembola and Coleoptera (Arribas et al., 
2016; Arribas, Andújar, Salces- Castellano, et al., 2021). Based on 
the blast output we assigned the ASVs to high- rank taxonomic lev-
els, by applying the weighted lowest common ancestor algorithm in 
megan6 (Huson et al., 2016; see also Hleap et al., 2021). Only ASVs 
assigned to Acari, Collembola or Coleoptera were retained and used 
for downstream analyses. We further filtered the ASVs using meta-
mate version 0.1b18 (Andújar et al., 2021), a novel approach aiming 
at removing putative nuclear copies of mitochondrial DNA (NUMTs; 
Lopez et al., 1994) and other types of low- frequency erroneous 
sequences from denoised metabarcoding data sets. This software 
allows the application of multiple read- abundance filtering strate-
gies and posterior evaluation of their effects on the prevalence of 
known authentic mitochondrial haplotypes and presumed nonmito-
chondrial copies (e.g., those violating the reading frame or expected 
length, as expected for NUMTs and erroneous sequences) in the 
final filtered data set (Andújar et al., 2021). The designation of ASVs 
as either known mitochondrial haplotypes or presumed nonauthen-
tic sequences was performed using both global (GenBank, NCBI nt 
collection) and local (“voucher” specimens) reference databases. We 
selected the most stringent filtering solution to ensure the removal 
of most erroneous sequences (see Appendix S1 for details on ASV 

designation and filtering in metamate). Subsequently, we used vsearch 
to generate a read- count community table of the metamate- filtered 
ASVs by matching them with a 100% identity value against the raw 
read data set before dereplicating, length filtering and denoising. We 
further filtered these community tables by removing ASVs showing 
abundances of two or fewer reads and also those whose contribution 
to the total number of reads per taxonomic group and library was 
<1%. Finally, filtered read- count community tables were converted 
to presence/absence tables (see Jurburg et al., 2021). Negative con-
trols were processed alongside actual samples throughout the filter-
ing workflow.

2.4  |  Estimates of α and β diversity at ASV and 
OTU levels

The resulting fully filtered ASVs were clustered into OTUs based on 
patristic pairwise distances, using a threshold of 3% genetic diver-
gence, which is commonly applied to arthropod COI metabarcoding 
data sets (Dopheide et al., 2019; Yu et al., 2012). Patristic distances 
were calculated based on a UPGMA (unweighted pair group method 
with arithmetic mean) tree, reconstructed using F84 model- 
corrected pairwise distances and a mafft FFT- NS- i alignment (Katoh 
& Standley, 2013). These analyses were conducted using the ade-
genet (Jombart, 2008), phangorn (Schliep, 2011) and ape (Paradis & 
Schliep, 2019) packages in r (R Core Team, 2020).

Using the ASV and OTU data sets, we calculated α diversity 
(richness) for each sampling site and habitat type. We also calculated 
community dissimilarity among sampling sites and between soil lay-
ers using the Sørensen index (βSOR), which we decomposed into its 
additive components (Simpson dissimilarity index or spatial turnover 
without the effect of variation in richness, βSIM, and nestedness, 
βSNE; Baselga, 2010). Then, we used these community dissimilarity 
matrices to calculate the local contribution to β diversity (LCBD), a 
comparative indicator of the uniqueness of each sample in terms of 
community composition (Legendre & De Caceres, 2013). We cal-
culated the above diversity metrics using the betapart (Baselga & 
Orme, 2012) and adespatial (Dray et al., 2021) r packages.

2.5  |  Characterization of sampling sites using 
spatial, environmental and landscape variables

A number of spatial, environmental and landscape variables were 
calculated to characterize the sampling sites and quantify the dis-
tances among localities, taking into account the high topographic 
complexity and environmental/landscape heterogeneity of the 
study area. We calculated pairwise weighted topographic distances 
(SPATWD) based on a digital elevation model (DEM) at 90- m resolu-
tion using the topoDistance r package (Wang, 2020) as described in 
the Appendix S1. We also generated a set of high- resolution envi-
ronmental variables (at 90- m resolution) for Cyprus, by spatial inter-
polation of temperature and precipitation layers at lower resolution 
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using the aforementioned DEM (see Appendix S1). Specifically, we 
interpolated six WorldClim (annual mean temperature, maximum 
temperature of warmest month, minimum temperature of coldest 
month, annual precipitation, precipitation of wettest quarter and 
precipitation of driest quarter; Fick & Hijmans, 2017) and three 
ENVIREM (climatic moisture index, Thornthwaite aridity index 
and topographic wetness index; Title & Bemmels, 2018) variables. 
These variables are known to affect the water– energy dynamics 
and to explain patterns of diversity in several arthropod groups, in-
cluding Coleoptera (Hawkins et al., 2003). We extracted values of 
each interpolated variable along with the elevation for all sampling 
sites and for 500 randomly distributed points throughout Cyprus, 
to avoid potential biases resulting from only considering conditions 
at focal sites. We then applied a principal component analysis (PCA; 
Figure S1) to reduce the dimensionality of the data set and eliminate 
covariance among variables and we retained the two first principal 
components (PCs). PC1 (accounting for 81.3% of the variation) was 
positively correlated with altitude and precipitation variables and 
negatively with temperature variables, and PC2 (8.0%) was posi-
tively correlated with the topographic wetness index (Table S3). The 
PC1 and PC2 scores for each sampling site were considered as to-
poclimatic predictors (ENVPC1 and ENVPC2) for downstream analy-
ses. We also calculated a Euclidean distance matrix among sampling 
points based on the obtained scores of the two retained PCs, which 
was used as a topoclimatic predictor (ENVPC1- 2) for matrix regression 
analyses.

Finally, we applied a circuit theory approach (McRae, 2006) to 
quantify habitat connectivity among the Quercus alnifolia sampling 
sites. We focused specifically on the Q. alnifolia habitat because it 
is broadly distributed but highly fragmented across Troodos, in con-
trast to the Cedrus brevifolia, Pinus nigra and Juniperus foetidissima 
forests which are very narrowly distributed and the Pinus brutia 
forest which is very extensive with largely continuous distribution 
(Figure 1). Based on the assumption that dispersal among isolated 
forest fragments can be impeded by the presumed lower habitat 
suitability of the surrounding landscape (Brodie & Newmark, 2019), 
we built an isolation- by- resistance (IBR) scenario of connectivity 
(FRAIBR) defined by the distribution of Q. alnifolia forest patches 
according to the existing cartography (see Appendix S1). Two alter-
native IBR scenarios were constructed for comparison: the TRIIBR 
representing the topographic complexity of the study area as es-
timated by the terrain roughness index (Title & Bemmels, 2018) 
and the NULLIBR representing a completely “flat landscape” with a 
fixed resistance (=1) value assigned to all cells. Resistance distances 
among all Q. alnifolia sampling points (n = 11) were calculated under 
each alternative IBR scenario (FRAIBR, TRIIBR and NULLIBR) in circuits-
cape version 4.0.5 (McRae & Beier, 2007).

2.6  |  Statistical analyses

All statistical analyses were performed at sampling site level, after 
integrating the community tables of the two soil layer samples (leaf 

litter and deep soil) for all three taxonomic groups (Acari, Collembola 
and Coleoptera) into a single matrix. Each of the analyses was per-
formed at both ASV and OTU levels.

2.6.1  |  Richness and community uniqueness

We used ANOVAs to test for significant differences in richness 
(RICH) and community uniqueness (LCBD, local contribution to β di-
versity) between forest habitats. We used generalized linear mixed 
models (GLMMs) to analyse the relationship between RICH or LCBD 
per site and the topoclimatic variables (ENVPC1 and ENVPC2) as pre-
dictors, with latitude and longitude as covariates. We built GLMMs 
fitting forest habitat type as a random effect in order to account for 
nonindependence among samples from the same forest habitat (see 
Appendix S1).

2.6.2  |  β diversity

The clustering of sampling sites according to their community com-
position was visualized using nonmetric multidimensional scaling 
(NMDS) assuming two dimensions (k = 2). Differences among for-
est habitat types were tested for significance using permutational 
multivariate analysis of variance (PERMANOVA). We used sym-
metric Procrustes analyses to statistically assess nonrandomness 
among NMDS ordinations calculated from different community dis-
similarity matrices (βSOR vs. βSIM and ASVs vs. OTUs; see Peres- Neto 
& Jackson, 2001). These analyses were performed using the vegan 
(Oksanen et al., 2020) and pairwiseAdonis (Martinez Arbizu, 2020) 
r packages.

The effect of forest habitat type and of the spatial and topocli-
matic predictors on β diversity patterns was tested using distance- 
based redundancy analysis (dbRDA; Legendre & Anderson, 1999), 
at both across- habitats and within- habitat scales. Specifically, the 
response variables were the community dissimilarity matrices based 
on the Simpson dissimilarity index (βSIM), and the explanatory vari-
ables were forward selected from full models containing the fol-
lowing sets of predictors: (i) forest habitat type (HAB); (ii) spatial 
variables (SPAPCNMi) derived from the transformation of the topo-
graphic weighted distance matrix using Principal Coordinates of 
Neighbour Matrices (PCNM, see Appendix S1); and (iii) topoclimatic 
variables (ENVPC1 and ENVPC2). The best- fit model was selected 
after ensuring there were no issues of multicollinearity (variance in-
flation factors, VIF <10; e.g., Tonkin et al., 2016). Finally, the best- fit 
models for the across- habitat analyses were used to partition the 
variance explained exclusively by each variable group (forest hab-
itat type, space and topoclimate) and their intersections using the 
adjusted coefficient of determination (R2

ADJ) (Zinger et al., 2019). 
These analyses were performed using the BiodiversityR (Kindt & Coe, 
2005) and vegan r packages.

To validate the dbRDA inferences (Jupke & Schäfer, 2020), we 
also applied multivariate generalized linear models (mvGLMs) as 
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6116  |    NOGUERALES Et AL.

implemented in the mvabund r package (Wang et al., 2012). Unlike 
dbRDA, which is a distance- based approach, this model- based 
method fits a separate GLM per species and performs resampling- 
based hypothesis testing for community- level effects of predic-
tors. Here, incidence (presence/absence) data sets were used as 
input and tested against the same sets of predictors as in dbRDA. 
Models were fitted using a binomial error distribution and a log 
link function. We first assessed the predictor significance using 
single- term models and only those predictors showing a signifi-
cant effect were used to assemble a full model. The best- fit model 
was built following a backward stepwise selection approach (How 
et al., 2020). Term significance was assessed using likelihood ratio 
tests, PIT- trap resampling and 999 bootstrapping iterations (Wang 
et al., 2012).

Finally, we assessed the effect of habitat connectivity on the 
community composition of the Quercus alnifolia (Qa) sampling sites 
by applying matrix regressions with randomization (MRR; Wang, 
2013). Specifically, the community dissimilarity matrices based on 
the Simpson dissimilarity index (βSIM) were used as response vari-
ables, while the explanatory variables were selected among: (i) re-
sistance due to habitat fragmentation (FRAIBR), (ii) resistance due to 
topographic complexity (TRIIBR), (iii) resistance due to a “flat land-
scape” (NULLIBR), (iv) weighted topographic (SPATWD) distances and 
(v) topoclimatic (ENVPC1- 2) distances. We assembled a full model 
including all explanatory matrices and built the best- fit model fol-
lowing a backward stepwise selection approach, using 999 permuta-
tions for the significance tests (e.g., Ortego et al., 2015). The unique 
contribution of each predictor to the total variance explained by the 
best- fit model was quantified using hierarchical variance partitioning 
analysis in the hier.part r package (Walsh & Mac Nally, 2003). Once 
the best- fit model was selected, we visualized the relationship be-
tween community similarity (1 − βSIM) and the explanatory distance/
resistance matrices and fitted a distance– decay of community sim-
ilarity curve (Gómez- Rodríguez & Baselga, 2018; Nekola & White, 
1999). Specifically, we fitted a negative exponential function to uni-
variate GLMs assuming a Gaussian error distribution and a log link 
function as implemented in the betapart r package.

3  |  RESULTS

3.1  |  Richness and uniqueness of soil 
microarthropod communities

After denoising and chimera filtering, the removal of putative spuri-
ous sequences by metamate, followed by additional filtering of com-
munity tables, generated a fully filtered data set comprising 907 
ASVs which clustered into 386 OTUs (putative species) across the 
three taxonomic groups. Specifically, we retrieved a total of 353 
ASVs and 154 OTUs of Coleoptera, which was the most diverse 
group at both across-  and within- habitat scales. The Acari and 
Collembola data sets comprised 237 and 317 ASVs which clustered 
into 139 and 93 OTUs, respectively (Figure 2).

The average richness of haplotypes per sampling site differed 
among habitat types, with the Cedrus brevifolia (Cb) habitat showing 
significantly higher richness than the other four forest types (Tukey's 
test: p < .028 in all comparisons involving Cb; Figure 2). At OTU level, 
the average richness per site was higher in the forest types distrib-
uted at low and mid- altitudes (Pinus brutia, Quercus alnifolia and C. 
brevifolia) than in those habitats restricted to higher elevations (Pinus 
nigra and Juniperus foetidissima; Figure 2). However, the significance 
of this pattern was not preserved after post hoc tests (Tukey's test: 
all p > .123). The average local contribution to β diversity (LCBD) per 
sampling site differed significantly among habitats, with the P. brutia 
(Pb) and Q. alnifolia (Qa) communities showing significantly higher 
uniqueness at both ASV and OTU level when compared to the high- 
altitude P. nigra (Pn) and J. foetidissima (Jn) communities (Tukey's 
test: p < .05 in most comparisons involving P. brutia or Q. alnifolia; 
Figure 2).

3.2  |  Effect of topoclimatic and spatial variables on 
patterns of richness and uniqueness

Regression analyses (GLMMs/GLMs; see Appendix S1) showed a sig-
nificantly negative relationship between average richness of ASVs 
per site and longitude (Lon), indicating that community richness de-
creased towards the east of the Troodos mountain range (Table 1; 
Table S4). To ensure that this relationship was not biased by the 
Cedrus brevifolia (Cb) sites, which are geographically restricted to 
the westernmost part of the study area and have the highest ASV 
richness (Figures 1 and 2), additional analyses excluded these sites. 
These analyses consistently supported the significant effect of lon-
gitude on ASVs richness across forest habitats (95% confidence in-
terval [CI]: [−34.968] to [−4.032]). Conversely, the richness of OTUs 
per site was only explained by the topoclimatic predictor ENVPC2 
(Table 1; Table S4). Similarly, we found that LCBD estimates at both 
ASV and OTU levels were significantly correlated with the topocli-
matic variables, as summarized with the ENVPC1 and ENVPC2 predic-
tors (Table 1; Table S4).

3.3  |  Dissimilarity in community composition 
among forest sites

Dissimilarity in community composition among sampling sites was 
high and mainly determined by spatial turnover, with a very lim-
ited contribution of nestedness (ASVs: βSIM =0.974, βSNE =0.004; 
OTUs: βSIM =0.961, βSNE =0.006). This pattern was consistent when 
each taxonomic group was separately analysed (all βSIM >0.952, all 
βSNE <0.015). The community dissimilarity matrices (βSOR or βSIM) of 
the three taxonomic groups were correlated among them at both 
ASV and OTU level (Mantel test, all r > .240, all p <.001). As the 
contribution of nestedness was minimal, we only report the results 
of the statistical analyses obtained using the community dissimilar-
ity matrices calculated with the Simpson dissimilarity index (βSIM).
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    |  6117NOGUERALES Et AL.

The NMDS analysis grouped the sampling points according 
to their respective forest habitat type, except those from Pinus 
nigra (Pn) and Juniperus foetidissima (Jn) forests which exhibited 
a greater overlap in the ordination (Figure 3). PERMANOVAs de-
tected significant differences in community composition among 
forest habitat types, a factor explaining over 25%– 34% of the 
overall variation in community dissimilarity (Figure 3). These 
differences were significant for all habitat pairs (all p < .020), as 
confirmed by pairwise comparisons (all p < .019). The NMDS ordi-
nations obtained from different community dissimilarity matrices 
(βSOR vs. βSIM and ASVs vs. OTUs) converged on highly similar solu-
tions and were significantly concordant according to Procrustes 
tests (all r = .917, all p < .001).

3.4  |  Effect of topoclimatic and spatial variables on 
metacommunity structure

When dbRDAs were applied across all habitats, all three sets of 
explanatory variables (forest habitat type, spatial and topoclimatic 
variables) were retained as significant predictors of community 
dissimilarity (βSIM) (Table 2), although the largest fraction of the 
variation was clearly explained by habitat type (Figure 4). Pairwise 

comparisons testing for the effect of forest habitat type in commu-
nity dissimilarity confirmed significant differences between all habi-
tat pairs (all p < .020). When dbRDAs were applied at within- habitat 
scale, community dissimilarity (βSIM) of most forest types showed a 
significant relationship with topoclimatic predictors, except for the 
case of Juniperus foetidissima (Jn) habitat where no predictor was 
significant (Table 2; Table S5). Once the J. foetidissima sampling sites 
were analysed together with Pinus nigra sites according to the great 
overlap observed in the NMDS- based ordinations (Figure 3), a sig-
nificant correlation between community dissimilarity (βSIM) and to-
poclimatic predictors was confirmed (Table 2). The predominant role 
of topoclimatic variation in explaining βSIM diversity patterns within 
each habitat was consistent across ASV and OTU levels (Table 2; 
Table S5).

mvGLMs provided highly concordant inferences with those 
obtained using dbRDA (Table S6). Forest habitat type was the pre-
dictor that explained the largest fraction of the variation in com-
munity composition at across- habitat scale (R2 > .121), with the 
spatial and topoclimatic predictors also included in the final model, 
although exhibiting much less explanatory power (R2 < .044; Table 
S6). Significant differences in community composition between all 
habitat pairs were supported by pairwise comparisons (all p < .013). 
Analyses at within- habitat scale showed that topoclimatic predictors 

F I G U R E  2  Average richness (top panels) and community uniqueness (local contribution to β diversity— LCBD, bottom panels) across 
sampling sites, as estimated at ASV (left panels) and OTU (right panels) levels, per forest habitat type. Colours and habitat codes are as in 
Figure 1. Inset graphs show the contribution of each taxonomic group (Acari, dark grey; Collembola, grey; Coleoptera, light grey) to the 
cumulative richness (γ diversity) per forest habitat type. Shared letters below the box- plots indicate that differences between the respective 
habitats are not statistically significant (p > .05) after post hoc Tukey's tests
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6118  |    NOGUERALES Et AL.

significantly explained community composition within most habitat 
types. In those cases in which spatial predictors were also retained 
in the final model, their univariate contribution to the explained 
variance was usually lower than that of the topoclimatic predictors 
(Table S6).

3.5  |  Effect of habitat connectivity on community 
composition of the Quercus alnifolia habitat

MRR showed that community dissimilarity (βSIM) among Quercus al-
nifolia (Qa) sampling sites at both ASV and OTU levels was positively 

TA B L E  1  Results of model selection and averaging testing for the relationship between average richness (RICH) or local contribution to β 
diversity (LCBD) at ASV and OTU levels as response variables and topoclimatic variation (ENVPC1 and ENVPC2; see Table S3) as explanatory 
variables

Model R2
m R2

c Predictor Estimate ± adjusted SE Lower 95% CI Upper 95% CI

ASVs (haplotypes)

RICHasv .185 .384 Lat −6.326 ± 21.575 −48.613 35.961

Lon −24.975 ± 7.970 −40.597 −9.353

ENVPC2 −0.842 ± 1.536 −3.854 2.169

LCBDasv .698 .807 ENVPC1 −2.979 × 10−4 ± 7.938 × 10−5 −4.534 × 10−4 −1.423 × 10−4

ENVPC2 −6.160 × 10−4 ± 2.148 × 10−4 −1.037 × 10−3 −1.949 × 10−4

OTUs (3% lineages)

RICHotu .278 - Lon −5.199 ± 5.026 −15.049 4.651

ENVPC2 −3.115 ± 0.777 −4.639 −1.592

LCBDotu .488 .512 ENVPC1 −5.524 × 10−4 ± 9.684 × 10−5 −7.422 × 10−4 −3.625 × 10−4

Notes: Latitude (Lat) and longitude (Lon) were included as covariates. Predictors excluding the value 0 in their 95% confidence intervals (CI) are 
indicated in bold type and their effects were considered significant. For each final model including only predictors considered significant (in bold 
type), marginal (R2

m, variance explained by fixed effects) and conditional (R2
c, variance explained by both fixed and random effects) coefficients of 

determination are reported.

F I G U R E  3  Nonmetric multidimensional scaling (NMDS) ordination of sampling sites according to community dissimilarity (Simpson 
dissimilarity index, βSIM), at ASV (left panel) and OTU (right panel) levels. Circles correspond to sampling sites, with circle size representing 
sample richness. The percentage of explained variation (R2) and the significance of forest habitat type as a grouping factor based on 
PERMANOVA are reported on the top of each plot. Colours and habitat codes are as in Figure 1
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correlated with the IBR matrix based on the spatial configuration 
of Q. alnifolia patches (FRAIBR) and the topoclimatic distance matrix 
(ENVPC1- 2). Both predictors were significantly retained in the best- 
fit models (Table 3), and there was no correlation between them 
(Mantel test, r < .103, p > .188). According to the sensitivity analy-
ses, the FRAIBR scenarios that best explained the observed patterns 

of βSIM variation were those in which the non- Quercus matrix offered 
much higher resistance (10-  or 100- fold) than the target habitat 
(Table S7). In concordance with the MRR analyses, distance decay 
models adjusted using GLMs showed a roughly linear decrease in 
community similarity (βSIM) with increasing FRAIBR or ENVPC1- 2 dis-
tances, with both predictors being significant (Figure 5).

TA B L E  2  Best- fit models from distance- based redundancy analyses (dbRDA) on community composition (Simpson dissimilarity index, 
βSIM) of sampling sites at ASV and OTU levels, performed either with all sites (across habitats) or separately for each of the forest habitat 
types

ASVs (haplotypes) OTUs (3% lineages)

Data set Predictors F p- value R2
ADJ Predictors F p- value R2

ADJ

Across habitats HAB 3.311 <.001 .204 HAB 3.225 <.001 .195

SPAPCNM2 1.824 <.001 SPAPCNM1 1.422 .026

SPAPCNM5 1.383 .029 SPAPCNM2 1.963 <.001

ENVPC1 1.951 <.001 SPAPCNM5 1.409 .026

ENVPC2 1.565 .006 ENVPC1 1.608 .002

ENVPC2 1.460 .013

Pinus brutia (Pb) ENVPC1 4.808 .048 .024 ENVPC1 1.650 .003 .067

Quercus alnifolia (Qa) ENVPC1 1.618 .002 .058 SPAPCNM1 2.892 .002 .231

SPAPCNM2 1.850 .007

Cedrus brevifolia (Cb) ENVPC1 4.808 .041 .388 ENVPC1 3.602 .006 .420

ENVPC2 2.014 .024

Pinus nigra (Pn) ENVPC1 1.805 .005 .103 ENVPC2 1.621 .035 .081

Juniperus foetidissima (Jn) Null — — — Null — — — 

Pinus nigra (Pn) + Juniperus foetidissima (Jn) ENVPC1 1.459 .047 .030 ENVPC1 1.687 .026 .092

SPAPCNM3 1.755 .018

Note: The explanatory variables were forward selected from full models containing three sets of predictors: forest habitat type (HAB), spatial 
(SPAPCNMi) and topoclimatic (ENVPCi) variables. The adjusted coefficient of determination (R2

ADJ) for each model is provided. The Pinus nigra (Pn) 
and Juniperus foetidissima (Jn) sampling sites were both separately and jointly analysed according to results of NMDS- based ordinations (Figure 2). 
Predictor information for models with no significant variables (null) is replaced by dashes.

F I G U R E  4  Venn diagram illustrating the partitioning of explained variance in community composition among the three sets of 
explanatory variables (forest habitat type, spatial and topoclimatic predictors) and their intersections. Variance partitioning was conducted 
on the best- fit dbRDA models, which only included significant variables after a forward selection procedure (Table 2). Analyses were 
performed on the Simpson dissimilarity index (βSIM) community dissimilarity matrices at ASV and OTU levels. Percentages refer to adjusted 
coefficients of determination (R2

ADJ). Percentages below 0.25% are not shown
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6120  |    NOGUERALES Et AL.

4  |  DISCUSSION

wocDNA metabarcoding enabled us to characterize the soil 
microarthropod assemblages of the understudied montane forests 
of Cyprus and provide insights into the drivers of metacommunity 
structure across the topographically complex region of Troodos. 
By integrating community metabarcoding with high- resolution 
topoclimatic and landscape information, we revealed that 

environmental filtering induced by forest habitat type and 
topoclimatic heterogeneity controls different facets of Troodos soil 
biodiversity (α diversity, β diversity and community uniqueness), 
while habitat connectivity mediates the spatial turnover across 
the highly fragmented Quercus alnifolia (Qa) habitat. Patterns of β 
diversity were very similar at OTU and ASV levels, but α diversity 
varied, with OTU richness following an altitudinal gradient and ASV 
richness a longitudinal one, probably indicating a decline of genetic 

TA B L E  3  Multiple matrix regression with randomization (MRR) analyses on community composition (Simpson dissimilarity index, βSIM) of 
Quercus alnifolia (Qa) sampling sites at ASV and OTU levels

ASVs (haplotypes) OTUs (3% lineages)

Predictors Coefficient t p- value RI
2 RJ

2 Predictors Coefficient t p- value RI
2 RJ

2

Explanatory terms Explanatory terms

FRAibr 0.078 2.745 .014 .112 .013 FRAibr 0.246 4.434 .003 .246 .020

ENVPC1- 2 0.106 3.889 .000 .210 .013 ENVPC1- 2 0.172 3.464 .005 .158 .020

Rejected terms Discarded terms

SPAtWd −0.209 .839 SPAtWd 0.442 .654

TRIibr 1.911 .272 TRIibr 0.569 .704

NULLibr −1.843 .257 NULLibr −0.250 .827

Notes: The explanatory variables were backward selected from full models containing the following distance matrices: “flat” scenario (NULLIBR), 
topography (SPATWD), topoclimate (ENVPC1- 2), topographic complexity (TRIIBR) and forest fragmentation (FRAIBR). The significance of both 
explanatory terms retained in the best- fit model and those rejected during the backward selection procedure are reported. The independent (RI

2) and 
joint coefficient of determination (RJ

2) of each predictor retained in the best- fit final model are provided.

F I G U R E  5  Distance decay of community similarity across the Quercus alnifolia (Qa) habitat. Distances among Q. alnifolia sampling sites 
were calculated either based on the isolation- by- resistance (IBR) scenario reflecting the spatial distribution of Qa forest patches (FRAIBR, 
left panel) or on the topoclimatic distances among sampling sites (ENVPC1- 2, right panel). Community similarity was estimated using the 
Simpson similarity index (1 − βSIM) at ASV (filled circles, solid regression line) and OTU (open circles, dashed regression line) levels. For display 
purposes, the decay curves were fitted using generalized linear models (GLMs) with a negative exponential function. Regression slopes, 
coefficients of determination (pseudo- R2) and p- values are provided on the top of each panel. See Table 3 for multivariate matrix regression 
analyses assessing the independent contribution of each predictor to community dissimilarity
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diversity eastwards due to anthropogenic disturbance. Therefore, 
species richness presumably responded to niche- based processes, 
while haplotype richness responded to historical contingencies. 
Our results demonstrate the utility of combining OTUs with ASVs 
obtained by stringent filtering for characterizing diversity patterns 
of complex assemblages across heterogeneous landscapes.

4.1  |  Forest type shapes regional 
metacommunity structure

The community composition of soil microarthropods across Troodos 
was largely explained by forest type, irrespective of spatial and to-
poclimatic variation (Table 2; Table S6; Figure 4), suggesting a pri-
mary role of habitat filtering as a driver of regional metacommunity 
structure. The importance of habitat type in shaping the composi-
tion of soil microarthropod assemblages has been demonstrated by 
previous research comparing forest vs. grassland habitats (Arribas, 
Andújar, Salces- Castellano, et al., 2021; Caruso et al., 2012) or dif-
ferent grass and shrub species (Coulson et al., 2003; see also Doblas- 
Miranda et al., 2009), but to our knowledge, this is the first study 
to compare different forest types in a systematic way. Given the 
mosaic nature of Troodos (Figure 1), our sampling scheme revealed 
high turnover among nearby sampling sites of different woodland 
habitats (Figure 3), highlighting a major role of underlying forest- 
specific edaphic features for the community assembly of soil micro-
arthropods (Eissfeller et al., 2013). Leaf litter and vegetation type 
are documented to influence the soil environment through changes 
in microhabitat availability and physicochemical edaphic proper-
ties (Berg & McClaugherty, 2008), and such local abiotic features 
might be driving a scenario of species sorting (Leibold et al., 2004) or 
even the existence of largely separate metacommunities inhabiting 
each forest type. In contrast to the general pattern, the communi-
ties of the two highland habitats of Pinus nigra (Pn) and Juniperus 
foetidissima (Jn) are more similar to each other (Figure 3; although 
still significantly different based on pairwise comparisons), suggest-
ing that harsh climatic conditions at those high altitudes might be 
imposing a stronger environmental filter than forest- associated soil 
attributes. Alternatively, the spatial configuration of this highland 
woodland (composed of isolated small stands of J. foetidissima em-
bedded in a much larger matrix of P. nigra) might facilitate dispersal 
among habitat patches and partly counteract the effects of habitat 
filtering (Leibold et al., 2004; Logue et al., 2011). These two hypoth-
eses are not mutually exclusive and may jointly contribute to the 
higher similarity in community composition between these highland 
assemblages.

4.2  |  Topoclimate as a driver of within- habitat 
metacommunity structure

Analyses performed at the within- habitat scale revealed the impor-
tance of both environmental and spatial variables on community 

composition in most cases (Table 2; Table S6), which is in line with 
previous research on soil microarthropod communities (Arribas, 
Andújar, Salces- Castellano, et al., 2021; Bahram et al., 2016; 
Ingimarsdóttir et al., 2012; Lindo & Winchester, 2009). Disentangling 
the relative contribution of environmental vs. spatial factors has 
proven to be challenging as environmental variation is often spatially 
autocorrelated, which can lead to a spurious inflation of the inferred 
environmental contribution (Clappe et al., 2018; Vellend et al., 2014). 
In our study, spatial predictors generally explained less variance than 
topoclimatic factors in mvGLMs (Table S6), and their effect became 
nonsignificant after applying a forward selection approach in dbRDA 
(Table 2; Table S5). These results, along with the relatively low de-
gree of collinearity between spatial and topoclimatic axes (VIF < 7; 
Vittinghoff et al., 2012), emphasize the role of environmental filter-
ing as a key driver of metacommunity structure (Brown et al., 2017). 
Our results would complement several morphology- based studies 
suggesting that community composition of soil microarthropods 
is driven by environmental filtering, primarily in response to gradi-
ents of edaphic parameters (Caruso et al., 2019; Gan et al., 2019; 
Gao et al., 2016; Grear & Schmitz, 2005). However, they appear to 
contrast with the recent wocDNA metabarcoding study of Arribas, 
Andújar, Salces- Castellano, et al. (2021), where dispersal limita-
tion was identified as the main driver of community assembly at 
the within- habitat scale. This discrepancy cannot be attributed to 
taxonomic resolution, as both studies used very similar protocols to 
retrieve ASVs and OTUs, but it could be partly explained by differ-
ences in sampling scale, as the generally broader sampling extent 
of our study could enhance the role of environmental filtering as a 
consequence of encompassing higher environmental heterogeneity 
(Chase, 2014). Yet we also found environmental filtering to prevail 
in our narrowly distributed habitats (e.g., Cedrus brevifolia, Pinus 
nigra) with observational scales slightly smaller (<7 km) than those 
of Arribas, Andújar, Salces- Castellano, et al. (2021). Additionally, the 
overall stronger effect of environmental filtering in our study system 
may reflect context- dependency (Soininen, 2014), with environmen-
tal processes playing a more important role in systems character-
ized by high topoclimatic heterogeneity. While in Arribas, Andújar, 
Salces- Castellano, et al. (2021) there were only moderate altitudinal 
gradients (~200– 670 m elevation difference), our sampling spanned 
a steep elevational (1470 m elevation difference) and environmental 
gradient, with topoclimatic conditions varying greatly even across 
short distances, both within and across habitats (Figure S1). This 
phenomenon may be common in topographically complex regions, 
where dispersal limitation may actually be imposed by environmen-
tal heterogeneity rather than by geography per se (Liu et al., 2018), 
and points out the relevance of detailed topoclimatic characteriza-
tion for understanding metacommunity structure within mountain-
ous landscapes. However, it is noteworthy that the total variance 
explained by some models was relatively low (R2

ADJ < 5%– 10%, 
Table 2). This was not unexpected, as it is a common finding among 
metacommunity studies (Cottenie, 2005), and has been tradition-
ally attributed to other ecological processes that are not frequently 
measured (Vellend, 2010). In particular, stochastic demographic 
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processes including ecological drift in the absence of dispersal limi-
tation (Bahram et al., 2016; Zinger et al., 2019) or priority effects 
via niche pre- empting (Fukami, 2015) have been hypothesized as 
relevant forces potentially interfering with community assembly in 
the soil environment. Additionally, we have not considered explicitly 
the effect of edaphic variables (e.g., organic matter, nutrient content 
or pH; Gan et al., 2019; Gao et al., 2016), although some of their 
variation is probably captured by forest habitat type and by certain 
topoclimatic variables, which are thought to influence specific soil 
attributes (horizon depth, moisture; Florinsky, 2012; Hillel, 2008).

4.3  |  Role of habitat connectivity in the 
assembly of the Quercus alnifolia metacommunity

Habitat fragmentation has been shown to alter the relative 
importance of spatial vs. environmental processes as drivers of 
metacommunity structure (Jamoneau et al., 2012), but the way we 
measure spatial distances among habitat patches and account for the 
effects of the surrounding matrix may affect our interpretation of 
the predominant processes (Resasco & Fletcher, 2021; Watling et al., 
2011). In the case of the highly fragmented Quercus alnifolia (Qa) 
habitat, circuit theory- based connectivity modelling demonstrated 
that isolation estimates accounting for fragmentation and matrix 
resistance consistently performed better at explaining turnover than 
those based on topography, with the latter performing better than 
null models assuming a homogeneous matrix (Table 3; Table S7). 
This finding aligns with recent studies that have documented the 
ecological importance of dispersal corridors for community assembly 
across different taxonomic groups (Firmiano et al., 2021; Marrec et al., 
2021; reviewed in Fletcher et al., 2016). However, this approach relies 
on the assumption that all species of the metacommunity respond 
similarly to landscape heterogeneity. Future studies integrating 
metabarcoding with morphological information derived from local 
“voucher” reference collections could facilitate the implementation 
of species- specific analyses accounting for ecological and trait 
variation (Brodie & Newmark, 2019; Hartfelder et al., 2020). Despite 
these limitations, our results provide empirical evidence of an 
important effect of habitat fragmentation on soil microarthropod 
metacommunity structure across the Q. alnifolia (Qa) forest patches, 
with the role of environmental filtering remaining equally significant 
(Table 3). Interestingly, we also obtained equivalent distance– 
decay of community similarity curves based on connectivity or on 
topoclimatic distances (Figure 5), although the topoclimatic variables 
were not spatially autocorrelated (Mantel test, r < .103, p > .188) 
and their shared variance with connectivity- based predictors was 
very low (<2%; Table 3). The similar slopes of the decay curves for 
ASVs and OTUs based on spatial distances are compatible with a 
neutral dispersal- constrained model (Baselga et al., 2015), while 
the equivalent pattern based on topoclimatic distances could be 
generated under certain scenarios of high dispersal and narrow 
ecological niches (Baselga et al., 2013). Taken together, our results 
suggest that spatial and niche- based processes have jointly shaped 

turnover patterns across the Q. alnifolia (Qa) habitat, although each 
process may affect different fractions of the metacommunity (e.g., 
some species and/or intraspecific entities may have low dispersal 
propensity and wide topoclimatic niches, while others might be good 
dispersers with narrow niches). Future species- specific analyses may 
help to refine these conclusions.

4.4  |  Utility of ASVs for community ecology

All the above conclusions regarding the predominant processes 
shaping community composition of soil microarthropods across the 
Troodos forests were very similar when based on OTUs or ASVs, 
contributing to the broader discussion about whether OTUs should 
be replaced by ASVs in metabarcoding studies (Callahan et al., 2017; 
Porter & Hajibabaei, 2020). As recent read- filtering methods have 
overcome the need of clustering to account for amplification and 
sequencing errors, the user- defined OTUs (traditionally used as 
proxies of species- level entities) could be redundant. However, the 
exclusive use of ASVs could affect the biological conclusions drawn 
from biodiversity analyses, as patterns of haplotypic diversity can 
reflect demographic attributes of populations, and do not always 
coincide with diversity patterns at the species level (Martin et al., 
2021). In our system, while β diversity estimates at ASV and OTU 
levels were correlated and probably shaped by the same ecological 
processes as described above, we observed distinct richness patterns 
between them, which were explained by statistically significant 
differences in geographical or topoclimatic predictors. OTU richness 
per site was primarily explained by topoclimatic conditions, with 
assemblages hosting fewer OTUs as elevation and precipitation 
increased and temperature decreased (Table 1; Figure S2), thus 
following the general rule of declining species richness with increasing 
elevation (Rahbek, 1995), commonly interpreted as an outcome 
of environmental filtering driven by temperature or productivity 
gradients (Graham et al., 2014; Peters et al., 2016). In contrast to 
OTUs, ASV richness varied significantly along a longitudinal axis 
with local communities harbouring more haplotypes westwards 
(Table 1; Figure S2), which might be interpreted as a signature of 
higher on average intraspecific genetic diversity in the western part 
of the mountain range, which has historically been less affected by 
anthropogenic disturbance (Delipetrou et al., 2008). This finding is 
in accordance with population genetic studies of forest trees that 
observed high genetic diversity in the western populations of Pinus 
brutia (Eliades et al., 2018) and Cedrus brevifolia (Eliades et al., 2011). 
This is potentially a consequence of the local topography facilitating 
the maintenance of higher effective population sizes in this region 
during the Pleistocene climatic oscillations, and/or of less intensive 
historical human impact (livestock grazing and logging) than in Eastern 
Troodos (Eliades et al., 2018). The decline of haplotypic diversity in 
soil microarthropod assemblages eastwards may therefore indicate 
incipient biodiversity loss, as genetic variation tends to be eroded 
more quickly than species diversity under scenarios of global change 
(Balint et al., 2011). However, such differences between species and 
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haplotype diversity were not reflected in patterns of community 
uniqueness, as our ASV-  and OTU- based estimates of LCBD (local 
contribution to β diversity) were correlated and similarly explained 
by topoclimatic variation (Table 1; Figure S2), without any clear 
signature of historical contingencies, as those probably affecting 
longitudinal haplotypic richness patterns across Troodos. Our 
results therefore highlight the complementarity of OTUs and ASVs 
for community metabarcoding, as such side- by- side comparisons can 
help to detect processes that produce uncoupled patterns between 
the two levels of diversity (Reisch & Schmid, 2019).

Our ASV- level analyses were facilitated by the application of 
the metamate tool that utilized local and public reference sequence 
databases to discard nonauthentic ASVs and retain only true biolog-
ical sequence variants (Andújar et al., 2021). Although applying the 
most stringent filtering in metamate might have caused the removal of 
valuable rare biological haplotypes, appreciable intraspecific genetic 
variation (on average 2.35 ASVs per OTU) was still retrieved and pro-
duced reasonable haplotype diversity patterns as explained above. 
Based on our results, we advocate stringent ASV filtering, as it can 
provide informative data sets without compromising the required 
reliability for haplotype- level metabarcoding. Even if we cannot be 
fully confident that all erroneous haplotypes were filtered out, as the 
performance of the approach depends on the completeness of the 
reference sequence catalogue (Andújar et al., 2021), the future in-
corporation of intraspecific genetic data in local reference databases 
will provide further confidence and the opportunities for intra- OTU 
analyses of ASV variation (Elbrecht et al., 2018; Zizka et al., 2020).

5  |  CONCLUSIONS

This study highlights the power of combining ASV-  and OTU- level 
community metabarcoding, enabled by the application of stringent 
filtering strategies, for the description of spatial biodiversity patterns 
of complex communities in understudied regions (Cyprus) and envi-
ronments (soil), overcoming previous limitations of the taxonomic 
impediment, low- resolution data and noise due to the presence of 
spurious sequences. The wide implementation of harmonized field, 
laboratory and bioinformatic protocols for community metabarcod-
ing of unexplored assemblages will increase the comparability of 
data sets from across the globe (Arribas, Andújar, Bidartondo, et al., 
2021), providing the basis for broad- scale analyses of metacommu-
nity patterns that would enable drawing more general conclusions 
on the consistency or context- dependency of ecological processes 
across spatial scales and fractions of biodiversity. Additionally, the 
ease with which all species in local communities can be characterized 
at the population genetic level using metabarcoding with stringent 
filtering raises the prospect for modelling demographic processes 
for each of the component species (Overcast et al., 2019, 2021). Such 
an approach has the potential to elucidate historical and contempo-
raneous community responses to environmental heterogeneity and 
dispersal limitation at a much finer resolution than the summary sta-
tistics currently applied in whole- community metabarcoding.
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