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Abstract

Anthropogenic habitat fragmentation has altered the distribution and population

sizes in many organisms worldwide. For this reason, understanding the demo-

graphic and genetic consequences of this process is necessary to predict the fate

of populations and establish management practices aimed to ensure their viabil-

ity. In this study, we analyse whether the spatial configuration of remnant semi-

natural habitat patches within a chronically fragmented landscape has shaped the

patterns of genetic diversity and structure in the habitat-specialist esparto grass-

hopper (Ramburiella hispanica). In particular, we predict that agricultural lands

constitute barriers to gene flow and hypothesize that fragmentation has restricted

interpopulation dispersal and reduced local levels of genetic diversity. Our results

confirmed the expectation that isolation and habitat fragmentation have reduced

the genetic diversity of local populations. Landscape genetic analyses based on

circuit theory showed that agricultural land offers ~1000 times more resistance to

gene flow than semi-natural habitats, indicating that patterns of dispersal are

constrained by the spatial configuration of remnant patches of suitable habitat.

Overall, this study shows that semi-natural habitat patches act as corridors for in-

terpopulation gene flow and should be preserved due to the disproportionately

large ecological function that they provide considering their insignificant area

within these human-modified landscapes.

Introduction

Anthropogenic habitat fragmentation has altered the distri-

bution and population sizes in many organisms worldwide

and can be considered one of the major threats to biodiver-

sity (Noss and Csuti 1994; Fahrig 2002; Lindenmayer and

Fischer 2006). As a result of this process, the genetic con-

nectivity and diversity of populations has been often nega-

tively impacted (Frankham 1996; DiBattista 2008).

Fragmentation of formerly continuous habitats can modify

the dispersal routes of organisms in such a way that only

suitable remnant habitats act as corridors for genetic

exchange among populations (Fahrig 2007; e.g. Pavlacky

et al. 2009; Jha and Kremen 2013). In turn, population

subdivision and disruption of gene flow can reduce levels

of genetic diversity (Frankham 1996; e.g. Levy et al. 2013;

M�endez et al. 2014) and, ultimately, compromise the via-

bility of populations and lead to local extinctions (Frank-

ham 2005; e.g. Saccheri et al. 1998). For this reason,

understanding the genetic consequences of habitat frag-

mentation is useful to predict the fate of populations and

establish management practices aimed to preserve their

evolutionary potential and ensure their long-term persis-

tence (DiBattista 2008).

The integration of genetic and spatial data can help to

determine whether postfragmentation habitat configura-

tion has modified dispersal patterns and identify the land-

scape elements that most contribute to genetic connectivity

(Manel et al. 2003; Storfer et al. 2007, 2010). In the absence

of natural barriers to dispersal, the movement of animals is

expected to be mostly determined by geographical distance

in prefragmentation continuous landscapes but constrained
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by the spatial distribution of corridors of suitable habitat

patches after fragmentation (Zellmer and Knowles 2009;

Jha and Kremen 2013). However, the responses of species

to landscape fragmentation are difficult to predict and

highly dependent on their dispersal capacity and propensity

to cross unsuitable habitat patches (Blanchet et al. 2010;

DiLeo et al. 2010; Lange et al. 2010). Accordingly, some

studies have found that fragmentation results in population

connectivity is constrained by corridors of suitable habitat

embedded within a hostile habitat matrix (e.g. Pavlacky

et al. 2009; Zellmer and Knowles 2009; Jha and Kremen

2013; Ruiz-Gonz�alez et al. 2014), whereas others have

revealed that human-driven landscape fragmentation has

no effect (Qu�em�er�e et al. 2010) or even facilitates dispersal

and gene flow (Bacles et al. 2005; Pavlova et al. 2012).

Landscape genetics can help to identify discontinuities in

gene flow and determine the relative resistance to move-

ment imposed by different landscape elements, offering a

powerful tool to understand the impacts of habitat frag-

mentation and inform on ground conservation practices

aimed to maintain or promote population connectivity

(Segelbacher et al. 2010).

The Mediterranean region has been modified over centu-

ries of logging and land clearing for grazing and agricul-

ture, constituting one of the areas of the world historically

most altered by humans (Blondel and Aronson 1999). As a

result of this process, large areas of formerly forested

regions have been transformed into agricultural lands and

nonfarmed areas are now often reduced to relict semi-natu-

ral habitat patches (Blondel and Aronson 1999). This is the

case of La Mancha, a region from central Spain that consti-

tutes the largest plain from the country and where land is

currently devoted in its great majority to extensive cultures

of wheat, barley, vineyards and olive trees. Semi-natural

habitats are mostly reduced to a few scattered small hills

and canyons, rock outcrops, and saline low grounds not

suitable for agriculture. In this study, we analyse whether

the configuration of these remnant semi-natural habitat

patches within this chronically fragmented landscape has

shaped the patterns of genetic diversity and structure in the

habitat-specialist esparto grasshopper (Ramburiella hispa-

nica) (Rambur, 1838). This Mediterranean orthoptera

exclusively inhabits esparto grass formations (e.g. Stipa ten-

acissima and Lygeum spartum), which in La Mancha region

are ubiquitous plant species in any remnant semi-natural

nonagricultural land. We first characterize the habitat of

the species in the study area and use circuit theory to gen-

erate different isolation-by-resistance (IBR) scenarios and

test the relative importance of geographical distance and

the distribution of suitable habitats on contemporary pat-

terns of genetic differentiation (McRae 2006; McRae and

Beier 2007; McRae et al. 2008). Second, we examine

whether habitat fragmentation has negatively impacted

local levels of genetic diversity (Frankham 1996; e.g. M�en-

dez et al. 2014; Levy et al. 2013). In particular, we (i) pre-

dict that agricultural lands constitute barriers to gene flow

and (ii) hypothesize that fragmentation has restricted inter-

population dispersal and reduced local effective population

sizes, resulting in populations located in more fragmented

and isolated habitat patches have lower levels of genetic

diversity.

Materials and methods

Study sites and sampling

During 2010, we sampled 352 individuals from 18 popula-

tions of esparto grasshoppers in La Mancha region, central

Spain (~2500 km2; Fig. 1). We aimed to sample 20 speci-

mens and an equal number of males and females in each

locality, but samples sizes are often male-biased due to the

difficulties to capture females in some sites (Table 1). Spec-

imens were preserved whole in 1500 lL of 96% ethanol

and stored at �20°C until needed for genetic analyses. Pop-

ulation code descriptions and further information on sam-

pling localities are given in Table 1 and Fig. 1.

Microsatellite genotyping and basic genetic statistics

We used a salt extraction protocol to purify genomic DNA

from a hind leg of each individual (Aljanabi and Martinez

1997). We used 12 highly polymorphic microsatellite

markers to genotype each sampled individual (Aguirre
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Figure 1 Geographical location of the studied populations of esparto

grasshopper (Ramburiella hispanica) (red dots) and land-cover types

classified as ‘natural vegetation’ (noncultivated areas adequate for the

species) and ‘agricultural land’ (mostly cultivated areas and, in a much

lesser extent, lagoons, reservoirs, villages and other developed areas).

Population codes are described in Table 1.
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et al. 2014; Table S1). Amplifications were conducted in

10-lL reaction volumes containing approximately 20 ng of

template DNA, 19 reaction buffer (67 mM Tris–HCL, pH

8.3, 16 mM (NH4)2SO4, 0.01% Tween-20, EcoStart Reac-

tion Buffer; Ecogen, Madrid, Spain), 2 mM MgCl2, 0.2 mM

of each dNTP, 0.15 lM of each dye-labelled primer (FAM,

PET, VIC or NED) and 0.1 U of Taq DNA EcoStart Poly-

merase (Ecogen). The PCR programme used was 9 min

denaturing at 95°C followed by 40 cycles of 30 s at 94°C,
45 s at the annealing temperature (Table S1) and 45 s at

72°C, ending with a 10-min final elongation stage at 72°C.
Amplification products were electrophoresed using an ABI

310 Genetic Analyzer (Applied Biosystems, Foster City, CA,

USA), and genotypes were scored using GENEMAPPER 3.7

(Applied Biosystems).

Microsatellite loci were tested for departure from

Hardy–Weinberg equilibrium within each sampling popu-

lation using an exact test (Guo and Thompson 1992) based

on 900 000 Markov chain iterations as implemented in the

program ARLEQUIN 3.1 (Excoffier et al. 2005). We also used

ARLEQUIN 3.1 to test for linkage disequilibrium between

each pair of loci for each sampling population using a like-

lihood-ratio statistic, whose distribution was obtained by a

permutation procedure (Excoffier et al. 2005). We applied

sequential Bonferroni corrections to account for multiple

comparisons (Rice 1989).

GIS analyses

In our study area, the esparto grasshopper distributes in

areas with formations of the host plants S. tenacissima and

L. spartum, which are ubiquitous plant species present in

any noncultivated habitat patch from La Mancha region.

The esparto grasshopper has never been recorded in agri-

cultural lands or developed areas (Pardo and G�omez 1995

and references therein). For this reason, we classified our

study area in two landscape element classes: ‘natural vege-

tation’ (noncultivated semi-natural areas optimal for the

species) and ‘agricultural land’ (mostly cultivated areas

and, in a much lesser extent, lagoons, reservoirs, villages

and other developed areas unsuitable for the species). This

information was obtained by digitalizing habitat patches

from the most recent aerial pictures available at Centro

Nacional de Informaci�on Geogr�afica from Spain (http://

centrodedescargas.cnig.es/CentroDescargas/). We used

ARCMAP 10.0 (ESRI, Redlands, CA, USA) to create a vector

layer that was then transformed into a raster grid (pixel

size = 50 m) to be used in subsequent landscape genetic

analyses (see below).

Genetic diversity

For each population, we calculated allelic richness (AR)

standardized for sample size using the program HP-RARE

(Kalinowski 2005) and gene diversity (HE) using FSTAT
(Goudet 1995). We used an information-theoretic model-

selection approach to analyse which variables contribute to

explain patterns of genetic diversity (AR and HE) across the

studied populations of esparto grasshopper. We considered

four explanatory variables: (i) the proportion of suitable

habitat (i.e. ‘natural vegetation’; see previous section)

within a 1 km radius of the sampling site, which we

Table 1. Geographical location, sample size (number of males/females in parentheses) and genetic diversity (AR: standardized allelic richness; HE:

gene diversity) for each study population of Ramburiella hispanica in La Mancha region.

Locality Code Latitude Longitude N AR HE

Saladar de Oca~na OCA 39.985445 �3.630508 20 (12/8) 10.32 0.864

Huerta de Valdecar�abanos HUE 39.838697 �3.617103 18 (15/3) 10.48 0.867

Laguna de El Cerrillo CER 39.694744 �3.301181 20 (10/10) 9.97 0.857

Laguna de El Altillo ALT 39.703076 �3.302290 20 (10/10) 10.24 0.848

Laguna de Longar LON 39.700548 �3.321046 20 (10/10) 10.46 0.852

Laguna de La Albardiosa ALB 39.658024 �3.288700 20 (10/10) 9.64 0.845

Villa de Don Fadrique FAD 39.634933 �3.231576 20 (10/10) 8.86 0.821

Laguna Larga LAR 39.609088 �3.317164 19 (11/8) 10.65 0.861

Laguna de T�ırez TIR 39.546603 �3.354411 19 (9/10) 10.39 0.857

Laguna de Pe~na Hueca PEN 39.517720 �3.350181 19 (10/9) 10.14 0.859

Laguna de Quero QUE 39.526984 �3.272089 20 (9/11) 10.21 0.865

Laguna de Los Carros CAR 39.472016 �3.262528 19 (9/10) 10.41 0.854

Laguna de Las Yeguas YEG 39.418396 �3.281576 20 (10/10) 10.56 0.860

Laguna de Palomares PAL 39.535906 �3.172344 20 (10/10) 10.44 0.864

Laguna de La Laguna LAG 39.538542 �3.134392 19 (10/9) 9.57 0.835

Laguna de Salicor SCO 39.470083 �3.173809 20 (14/6) 10.86 0.864

Saladar de El Pedernoso PED 39.491164 �2.767518 20 (17/3) 11.12 0.881

Laguna de Alcahozo ALC 39.391585 �2.875947 19 (15/4) 9.04 0.840
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hypothesize to be associated with local effective population

sizes (Ne) (see also Levy et al. 2013 for a similar approach);

(ii) average genetic differentiation (FST) of each population

with all other populations, an estimate of population isola-

tion (e.g. Wang et al. 2011; Ortego et al. 2012); (iii) lati-

tude; and (iv) longitude. We used general linear models

(GLM) with a normal error structure and identity link

function as implemented in the R 3.0.0 package LME4 (R

Core Team 2012). The precision of AR estimates may differ

among populations due to small differences in sample sizes,

and we took this into account using a weighted least square

method, where weight equals the sample size for each stud-

ied population. We ranked the resulting models following a

model-selection approach on the basis of the Akaike’s

information criterion corrected for small sample size (AICc;

Burnham and Anderson 1998). AICc values for each model

were rescaled (DAICc) calculating the difference between

the AICc value of each model and the minimum AICc

obtained among all competing models (i.e. the best model

has DAICc = 0). Models with DAICc ≤ 2 were considered

equivalent (Burnham and Anderson 1998). In cases where

model selection as a function of AICc did not give a single

model, we performed an averaging of equivalent models

(i.e. with DAICc ≤ 2; Burnham and Anderson 2002). We

calculated the mean of the predictor estimators, their

unconditional standard errors (SE) and confidence inter-

vals (CIs), and the relative importance of each variable in

the final averaged model (Σ xi, the sum of Akaike weights

of models with DAICc ≤ 2 in which the variable was

included). The effect of predictor variables was considered

significant if the 95% CI of their estimators did not cross

zero (Burnham and Anderson 2002). Model selection and

averaging was performed using the R package AICCMODAVG

(R Core Team 2012).

Genetic structure

We estimated genetic differentiation between populations

calculating pairwise FST values and testing their significance

with Fisher’s exact tests after 10 000 permutations as

implemented in ARLEQUIN 3.1 (Excoffier et al. 2005). Criti-

cal P-values for pairwise tests of allelic differentiation were

determined using a sequential Bonferroni adjustment (Rice

1989). Due to the frequent presence of null alleles in grass-

hoppers (e.g. Chapuis et al. 2008; Blanchet et al. 2012a),

we used the program FREENA to estimate null allele fre-

quencies and calculate pairwise FST values corrected for

null alleles using the so-called ENA method (Chapuis and

Estoup 2007). We used the randomization method imple-

mented in FSTAT 2.9.3 (10 000 permutations) to analyse

differences between males and females in interpopulation

genetic differentiation (FST), deviation from Hardy–Wein-

berg equilibrium (FIS), mean assignment index (mAIc) and

variance of the assignment index (vAIc) (Goudet et al.

2002), parameters that are informative about sex-biased

patterns of dispersal (e.g. Ortego et al. 2011). Finally, we

analysed genetic structure using the Bayesian clustering

analysis implemented in the program TESS 2.3.1, which

incorporates geographical coordinates as a priori informa-

tion (Chen et al. 2007; Durand et al. 2009). We ran TESS

2.3.1 under the conditional autoregressive (CAR) Gaussian

model of admixture with a linear trend surface (Durand

et al. 2009), which is expected to be more robust against

overestimation of Kmax in the presence of genetic clines

(Guillot 2009; Francois and Durand 2010). We conducted

20 independent replicates for each value of K = 2–12 using

50 000 sweeps and a burn-in period of 10 000 sweeps. The

admixture parameter (a) and the interaction parameter (w)

were initially set to a = 0.99 and w = 0.6. We used devi-

ance information criterion (DIC) values and stabilization

of the Q-matrix of posterior probabilities to determine the

optimal number of clusters (i.e. Kmax) for the data. Once

Kmax was deduced, 180 additional replicate runs were con-

ducted to yield a total of 200 replicate runs for Kmax. We

used the 10 runs with the lowest DIC values to calculate

average individual admixture proportions with CLUMPP

1.1.2 (Jakobsson and Rosenberg 2007), which were visual-

ized as a bar plot using DISTRUCT 1.1 (Rosenberg 2004).

Landscape genetic analyses

We applied circuit theory to model gene flow across a spa-

tially heterogeneous landscape and determine the impact of

isolation-by-distance (IBD) and different IBR scenarios on

observed patterns of genetic differentiation (McRae 2006;

e.g. McRae and Beier 2007). We used CIRCUITSCAPE 3.5.8 to

calculate resistance distance matrices between all pairs of

populations considering an eight-neighbour cell connec-

tion scheme (McRae 2006). We used the raster layer

obtained as described in the section ‘GIS analyses’, which

includes the two landscape element classes (‘natural vegeta-

tion’ and ‘agricultural land’) that a priori are the most likely

to determine the distribution and dispersal patterns in our

study species. We generated different IBR scenarios assign-

ing a range of resistance values to both habitat classes

(Table 2). This allowed us to identify the optimal ratio of

landscape resistance between ‘natural vegetation’ and ‘agri-

cultural land’ habitat classes that best fit our data of genetic

differentiation (e.g. Andrew et al. 2012; Seymour et al.

2013). To test the effect of IBD, we calculated a matrix of

Euclidean geographical distances between sampled popula-

tions using GEOGRAPHIC DISTANCE MATRIX GENERATOR 1.2.3

(Ersts 2011). We also generated a matrix of resistances in

CIRCUITSCAPE considering an entirely ‘flat’ landscape, that is

based on a raster layer in which all cells have equal resis-

tance (resistance = 1). This matrix of flat resistance
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distances is expected to yield similar results than the matrix

of Euclidean geographical distances, but the former has

been suggested to be more appropriate for comparison

with models of IBR generated with CIRCUITSCAPE (Lee-Yaw

et al. 2009; Munshi-South 2012; Jha and Kremen 2013).

Geographical distance and IBR matrices were tested against

matrices of pairwise FST values using a multiple matrix

regression with randomization (MMRR) approach (Wang

2013). We used the MMRR function script implemented in

R 3.0.2 (Wang 2013). Finally, we determined how well data

on pairwise genetic differentiation fit the different IBR

models (using the coefficient of determination, R2) with

varying levels of ‘natural vegetation’/‘agricultural land’

resistance ratios (e.g. Andrew et al. 2012).

Results

Microsatellite data

All microsatellite markers were highly polymorphic across

all populations, with 12–40 alleles per locus (Table S1).

After applying sequential Bonferroni corrections to com-

pensate for multiple statistical tests, two loci (RhA113 and

RhC1) consistently deviated from HWE across all the stud-

ied populations and were excluded from further analyses

(Table S1). The frequency of null alleles in the different loci

ranged from moderately low (<0.10; RhA108, RhB107,

RhC112, RhD2 and RhB2) to high (≥0.20; RhA105,

RhA112, RhA2 and RhC2) values (Table S1). We did not

find any evidence of genotypic linkage disequilibrium at

any pair of loci in any population (exact tests; all

Ps > 0.05).

Genetic diversity

AR and HE for each population are indicated in Table 1.

Our most parsimonious models revealed that both AR and

HE increased significantly with the proportion of suitable

habitat and decreased with isolation estimated as average

genetic differentiation (FST) with other populations (Table

S2 and Table 3; Fig. 2). All other tested models for AR had

a DAICc value > 2 (Table S2). For HE, the model also

including longitude was equivalent to the best ranked

model (DAICc value = 0.22; Table S2). However, uncondi-

tional CIs for longitude crossed zero, indicating that this

variable had no significant effect (Table 3).

Genetic structure

Pairwise FST values ranged from 0.0002 to 0.0469, and 73 of

the 153 pairwise comparisons were significant after sequen-

Table 2. Multiple Matrix Regressions with Randomization (MMRR) for genetic differentiation (FST and FST corrected for null alleles) in relation with

geographical distance (isolation-by-distance, IBD) and 21 isolation-by-resistance (IBR) scenarios considering different resistance values (1 = lowest

resistance; 100 000 = highest resistance) for the two land-cover types considered in this study (‘natural vegetation’ and ‘agricultural land’).

Model Natural Agricultural Ratio

FST FST corrected for null alleles

R2 b t P R2 b t P

IBD – – – 0.025 0.149 1.95 0.405 0.001 �0.010 �0.05 0.988

IBR-A 1 1 1 0.019 0.186 1.72 0.510 0.001 �0.030 �0.32 0.889

IBR-B 100 1 0.01 0.068 �0.243 �3.33 0.210 0.153 �0.358 �5.22 0.059

IBR-C 50 1 0.02 0.063 �0.235 �3.19 0.253 0.071 �0.295 �3.39 0.200

IBR-D 25 1 0.04 0.054 �0.222 �2.95 0.300 0.026 �0.201 �2.03 0.445

IBR-E 100 25 0.25 0.011 �0.118 �1.30 0.637 0.147 �0.355 �5.11 0.057

IBR-F 100 50 0.5 0.000 0.007 0.07 0.981 0.026 �0.201 �2.03 0.417

IBR-G 50 25 0.5 0.000 0.007 0.07 0.978 0.011 0.136 1.27 0.598

IBR-H 50 100 2 0.063 0.336 3.18 0.183 0.138 �0.349 �4.92 0.083

IBR-I 25 50 2 0.063 0.336 3.18 0.151 0.011 0.136 1.27 0.606

IBR-J 25 100 4 0.106 0.422 4.22 0.057 0.039 0.253 2.48 0.282

IBR-K 1 25 25 0.173 0.494 5.63 0.020 0.115 0.397 4.43 0.069

IBR-L 1 50 50 0.188 0.503 5.91 0.018 0.139 0.428 4.94 0.049

IBR-M 1 100 100 0.198 0.510 6.11 0.015 0.162 0.454 5.40 0.033

IBR-N 1 500 500 0.211 0.513 6.36 0.015 0.202 0.495 6.18 0.017

IBR-O 1 1000 1000 0.212 0.511 6.38 0.017 0.212 0.504 6.37 0.019

IBR-P 1 2000 2000 0.212 0.508 6.38 0.017 0.218 0.509 6.49 0.019

IBR-Q 1 5000 5000 0.211 0.505 6.36 0.015 0.223 0.512 6.57 0.016

IBR-R 1 10 000 10 000 0.211 0.504 6.35 0.011 0.224 0.513 6.60 0.012

IBR-S 1 20 000 20 000 0.211 0.503 6.35 0.013 0.225 0.513 6.62 0.017

IBR-T 1 50 000 50 000 0.210 0.502 6.34 0.015 0.225 0.513 6.63 0.011

IBR-U 1 100 000 100 000 0.210 0.502 6.34 0.011 0.226 0.513 6.63 0.009
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tial Bonferroni correction (Table S3). The randomization

method implemented in FSTAT showed that genetic differen-

tiation (FST) (P = 0.671), deviation from Hardy–Weinberg

equilibrium (FIS) (P = 0.586), mAIc (P = 0.959) and vAIc

(P = 0.348) did not differ between males and females. Indi-

vidual-based analyses in TESS resulted in a Kmax = 4, but

three genetic clusters were scarcely represented in most pop-

ulations (Fig. 3; Table S4).

Landscape genetic analyses

Euclidean geographical distances (IBD) and flat resistance

distances were highly correlated (r = 0.99, P < 0.0001) and

they were not significantly associated with genetic differen-

tiation, either when they were included alone in the model

(Table 2; Fig. 4A) or together with any IBR matrix (all

Ps > 0.2). However, genetic differentiation was positively

and significantly associated with those IBR matrices consid-

ering the minimum resistance for ‘natural vegetation’ habi-

tat (=1) and high resistance values for ‘agricultural land’

(>50) (Table 2; Fig. 4B). Model fit increased with the ‘agri-

cultural land’/’natural vegetation’ resistance ratio, but the

strength of the relationship between genetic differentiation

and IBR stabilized beyond a ratio 1000:1 (Table 2; Fig. 5).

Analyses based on FST corrected for null alleles gave very

similar results, but best models reached slightly higher val-

ues of R2 (Fig. 5B; Table 2). Further analyses based on FST
values calculated only considering the five loci with low fre-

quencies of null alleles (RhA108, RhB107, RhC112, RhD2

and RhB2; Table S1) provided analogous results (not

shown), indicating that the effects of null alleles on the

obtained results are minimal (e.g. Phillipsen et al. 2015).

Discussion

Our results confirmed our original expectations that land-

scape configuration has impacted gene flow and genetic

diversity of esparto grasshopper, indicating that historical

fragmentation of natural habitats as a result of land clearing

for agriculture has shaped its dispersal patterns and local

effective population sizes. Analyses of spatial patterns of

genetic structure showed the presence of a shallow genetic

differentiation in this species, with a high degree of genetic

admixture and low FST values (Fig. 3; Table S3). The

observed patterns of genetic structure in the esparto grass-

hopper contrast with those reported in other specialist

grasshoppers showing deep genetic structures at similar or

much shorter spatial scales (Ortego et al. 2011, 2012; Keller

et al. 2013a) and can be considered comparable to the lev-

els of genetic differentiation found in widespread generalist

orthopterans that are likely to be only moderately impacted

by habitat fragmentation (Wiesner et al. 2011; Blanchet

et al. 2012b; Keller et al. 2013b). The esparto grasshopper

is a specialist species that exclusively inhabits S. tenacissima

and L. spartum grass formations in the study area. How-

ever, these host plant species are ubiquitous in any semi-

natural habitat patch not devoted to agriculture, which

may have contributed to maintain moderately high levels

of gene flow within the study area despite a considerable

landscape fragmentation. This contrasts with the scenario

faced by the co-distributed grasshopper Mioscirtus wagneri,

a habitat specialist with low dispersal capacity exclusively

depending on the plant Suaeda vera for feeding (Ortego

et al. 2010, 2012). This plant exclusively grows in saline

low grounds, which are relict environments within the

study area and submitted to a degree of fragmentation

comparatively much higher than that experienced by the

habitats occupied by the esparto grasshopper (Ortego et al.

2010). In contrast with other studies on orthopterans, we

did not find any genetic signature of sex-biased dispersal in

the esparto grasshopper (Bailey et al. 2007; Ortego et al.

2011; Kindler et al. 2012). Thus, the fact that this species

has a relatively high flying capacity (J. Ortego and P. J. Cor-

dero, unpublished data) and that both sexes disperse from

their natal areas at a similar rates may have contributed to

increase gene flow and resulted in subtle genetic structures

at the landscape scale here analysed (Ortego et al. 2011).

Despite the high potential for gene flow in this species

and the shallow patterns of genetic structure above

described, the dispersal routes of the species have been con-

strained by the spatial configuration of remnant semi-natu-

Table 3. General linear models (GLMs) for (a) standardized allelic rich-

ness (AR) and (b) gene diversity (HE). A single model with DAICc ≤ 2

was obtained for AR. For HE, we performed model averaging of the two

best ranked equivalent models (DAICc ≤ 2) to obtain parameter esti-

mates and unconditional standard errors (S.E.) (see Table S2 in Support-

ing information). The relative importance of each variable is indicated

(Σ xi, sum of Akaike weights of models with DAICc ≤ 2 in which the

variable was present). Bold type indicates significant variables, that is

variables for which their unconditional 95% confidence interval (CI) did

not cross zero.

Estimate � SE Σ xi

Upper

95% CI

Lower

95% CI

(a) Allelic richness (AR)

Intercept 10.73 � 0.30

Cover of suitable

habitat

1.33 � 0.55 0.51 0.25 2.42

Average population

differentiation

�55.71 � 14.99 0.51 �85.08 �26.33

(b) Gene diversity (HE)

Intercept 0.86 � 0.01

Cover of suitable

habitat

0.04 � 0.01 0.78 0.02 0.07

Average population

differentiation

�1.13 � 0.34 0.78 �1.79 �0.47

Longitude 0.01 � 0.01 0.37 �0.01 0.03
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ral habitat patches within a matrix of land extensively

devoted to agriculture. Landscape genetic analyses based on

circuit theory showed that agricultural land offers ~1000
times more resistance to gene flow than semi-natural habi-

tats. The model exclusively including geographical dis-

tances between populations (i.e. IBD) was not significant

and model fit increased with higher ratios of agricultural

land/natural habitat resistance (Fig. 5), indicating that the

subtle genetic differentiation observed within the study area

probably reflects the impact of farming and land clearing

on the species’ demographic dynamics. However, agricul-

tural land cannot be considered an absolute barrier to dis-

persal in this species, as many of the semi-natural habitat

patches where our populations are located are highly iso-

lated within a matrix of cultures (see Fig. 1) (Coulon et al.

2006). Lack of interpatch dispersal through agricultural

lands should have resulted in stronger patterns of popula-

tion genetic differentiation than we actually found, particu-

larly if we consider the long time elapsed since

fragmentation occurred, the short generation time of the

species (1 year) and the fact that some of the studied habi-

tat patches are too small and cannot sustain population

sizes sufficiently large to buffer the effects of genetic drift

(Frankham 1996).

Analyses of genetic diversity have shown that the propor-

tion of suitable habitat around sampling sites is positively
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Figure 2 Consequences of habitat loss and population subdivision on the genetic diversity of the studied populations of esparto grasshopper (Ram-

buriella hispanica). Panels show (A, C) standardized allelic richness (AR) and (B, D) gene diversity (HE) in relation with (A, B) cover of suitable habitat

(%) and (C, D) average genetic differentiation with other populations (FST).
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associated with local levels of genetic diversity, suggesting

that populations located in less fragmented habitat patches

sustain higher effective population sizes (e.g. Levy et al.

2013; M�endez et al. 2014). Further, genetic diversity was

negatively correlated with average genetic differentiation

with all other populations, indicating that isolation and

limited gene flow have also contributed to erode genetic

variability in some populations (e.g. Wang et al. 2011).

This suggests that effective population sizes of the studied

populations are not above a threshold that prevents the loss

of genetic diversity and/or that the high potential for gene

flow suggested by the subtle patterns of genetic structure

observed in this species is not sufficient to counterbalance

the effects of genetic drift (Lange et al. 2010).

In a broader context, the results of this study illustrate

the importance of analysing the genetic consequences of

extensive habitat destruction in ubiquitous species with

high potential for gene flow. Understanding the conse-

quences of habitat fragmentation in widespread species can

help to determine the ‘minimum’ impact of this process for

the entire community of related species (Lange et al. 2010;

Keller et al. 2013b). Our study indicates that even wide-

spread species that can persist in small habitat patches and

show considerable gene flow also suffer from genetic drift

and loss of genetic diversity due to habitat fragmentation.

Thus, ubiquitous species less prone to suffer the effects of

habitat fragmentation can inform on the landscape-level

demographic processes experienced by other formerly co-

distributed species that may have already gone locally

extinct and provide a late-warning signal of the genetic

consequences of historical habitat fragmentation. For

these reasons, information on pervasive species, generally

disregarded in most conservation genetic studies (but see

Lange et al. 2010; Keller et al. 2013b), can greatly contrib-

ute to define the ultimate genetic impacts of habitat frag-

mentation, establish management practices aimed to

restore patch connectivity and evaluate the efficiency of

conservation actions in many regions of the world that

have historically experienced massive land clearing linked

to agricultural practices.

Conclusions and implications for conservation

Our study indicates that a few remnant semi-natural habi-

tat patches within a chronically and extensively fragmented

landscape act as functional corridors that facilitate inter-

population gene flow and shape local levels of genetic

diversity in the esparto grasshopper. These results, in con-

junction with those of previous studies, indicate that the

impact of land clearing for agriculture on dispersal patterns

and gene flow can strongly vary even among related organ-

isms that are expected to similarly respond to habitat frag-

mentation (Lange et al. 2010; Keller et al. 2013a,b; Levy

et al. 2013). The preservation of these semi-natural patches

may be particularly important for species with limited dis-

persal capacity and/or showing preferences for some micro-

habitats more geographically restricted. The extraordinarily

deep genetic structure previously reported for the highly

specialist M. wagneri suggests that local extinctions are not

likely to be compensated by recurrent recolonizations in

this species (Ortego et al. 2010, 2012), a pattern that con-

siderably differs from the remarkable gene flow and meta-

population dynamics characterizing the more widespread

R. hispanica (present study). Thus, a general recommenda-

tion derived from both this and previous studies in the area

would be implementing management practices aimed to

promote the conservation of organisms that are ecologi-

cally dissimilar, but prioritizing those species that are dis-

persal-limited and more likely to benefit from increasing or

maintaining population connectivity (Gaublomme et al.

2011; Keller et al. 2013b). Given that most lands are private

properties devoted to agriculture, management should

Figure 3 Genetic structure of the studied populations of esparto grasshopper (Ramburiella hispanica). Figure shows the genetic assignment based

on the Bayesian method implemented in the program TESS for different numbers of genetic clusters (K). Each individual is represented by a thin verti-

cal line, which is partitioned into K-coloured segments that represent the individual’s probability of belonging to the cluster with that colour. Black

lines separate individuals from different populations. Population codes are described in Table 1.
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therefore focus on preserving existing natural habitat

patches or enhancing dispersal through riparian corridors

(Keller et al. 2013a). Although some habitats have been

recently protected or proposed for protection in the study

region, these initiatives have been up to now mostly

focused on saline/hypersaline lagoons and low grounds of

particular importance due to their unique plant and animal

communities (e.g. Cirujano-Bracamonte and Medina-Do-

mingo 2002; Cordero and Llorente 2008). However, less

attention has been paid to other vulnerable habitats such as

esparto grass formations that provide important ecological

functions and contribute to maintain biodiversity in a dis-

proportionate way, particularly if we consider the insignifi-

cant area that they represent within these extensively

human-modified landscapes (Manning et al. 2006). These

habitats, often perceived as unproductive lands with no

economic value, are submitted to different sources of

human disturbance, including indiscriminate ploughing

and aerial insecticide spraying for pest management, mis-

leading habitat restoration practices (e.g. non-native pine

plantations), uncontrolled waste dumping, and recurrent

vegetation damage caused by livestock and off-road driv-

ing, among others (P. J. Cordero and J. Ortego, personal
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Figure 4 Relationship between genetic differentiation and landscape

resistance distances in the studied populations of esparto grasshopper

(Ramburiella hispanica). Genetic differentiation (panel A: FST; panel

B: FST corrected for null alleles) is plotted against resistance distances

calculated using CIRCUITSCAPE considering a resistance ratio of 100 000:1

for ‘agricultural land’/’natural vegetation’.
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Figure 5 Goodness of fit for models of landscape resistance consider-

ing different resistance ratios for agricultural land and natural vegeta-

tion. Panels show the coefficient of determination (R2) for models

analysing genetic differentiation (panel A: FST; panel B: FST corrected for

null alleles) in relation to isolation-by-resistance (IBR) distance matrices

plotted against resistance ratios for ‘agricultural land’ and ‘natural vege-

tation’ used to calculate resistance-based distances with CIRCUITSCAPE.

Resistance ratios for both habitat classes are log-transformed for illus-

trative purposes. Filled dots indicate significant models.
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observations). Thus, regional conservation policies aimed

to avoid these practices together with environmental edu-

cation activities to generate local people’s awareness for the

preservation of these remnants habitats would greatly con-

tribute to their long-term conservation.
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