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Abstract
Although the genetic consequences of contemporary landscape composition and range shifts driven 
Pleistocene climatic oscillations have been studied fairly well in alpine organisms, we know much less about 
how these factors have shaped the demography of taxa with broader climatic niches and distributions. Here, 
we use high-throughput sequencing data to study the processes underlying spatial patterns of genomic vari-
ation in Omocestus panteli (Bolívar, 1887) (Orthoptera: Acrididae), a common Iberian grasshopper distributed 
across numerous habitat types and a wide elevational range (from sea level to >2,000 m). Although the spe-
cies is broadly distributed, our analyses support that its contemporary populations show significant genetic 
fragmentation that dates back to the last glacial period. Accordingly, spatially explicit testing of alternative 
gene flow scenarios and demographic inference analyses revealed that genetic differentiation between popu-
lations and their long-term effective population sizes are best explained by the spatial configuration of envir-
onmentally suitable habitats during the last glacial maximum (ca. 21 ka). At that time, the species experienced 
net demographic expansions but interspersed unsuitable areas might have disrupted gene flow and created 
opportunity for geographical diversification. Collectively, our analyses indicate that the genetic makeup of 
contemporary populations is not well explained by current environmental factors or geographical barriers to 
dispersal but mostly reflects genetic fragmentation during the last glacial period followed by postglacial ad-
mixture among previously isolated gene pools. Taken together, these results support that the Pleistocene ‘spe-
cies pump’ model might be also useful in explaining demographic dynamics and geographical diversification 
in taxa characterized by broad climatic niches.

Key words:  demographic inference, genetic diversity, genetic structure, landscape genetics, phylogeography

Identifying the ecological and evolutionary phenomena underlying 
spatial patterns of genetic variation in natural populations is of ut-
most importance to understanding the processes that fuel geograph-
ical diversification and speciation (Knowles et al. 2007, Maier et al. 
2019). Contemporary landscape composition (e.g., spatial distri-
bution of suitable habitats and geographical barriers to dispersal; 
Manel et al. 2003) and selectively driven divergence associated with 

environmental heterogeneity (e.g., contrasting climates or habitats; 
Wang and Bradburd 2014) have been identified as important drivers 
of genetic differentiation among populations in numerous groups 
of organisms (Wang et  al. 2009, Shafer and Wolf 2013, Sexton 
et  al. 2014, González-Serna et  al. 2019). However, contemporary 
patterns of genomic variation often reflect the cues left behind by 
past demographic dynamics (Lanier et al. 2015, Glover et al. 2018, 
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Branstetter and Longino 2019, Caterino and Langton-Myers 2019). 
Remarkably, environmental changes driven by Pleistocene climatic 
oscillations have drastically altered the distributions and spatial con-
figuration of suitable habitats in many taxa from temperate regions 
(Hewitt 2000; e.g., Carnaval et  al. 2009, He et  al. 2013). Range 
shifts in latitude or elevation have led to recurrent processes of popu-
lation fragmentation (allopatric divergence) and expansions (sec-
ondary contact) with major impacts on patterns of genetic diversity, 
structure, and admixture (Lanier et al. 2015, Ortego et al. 2015a). 
For these reasons, the genetic makeup of present-day populations 
is often the result of the interaction between the contemporary and 
ancient processes that have impacted the demography of species (He 
et al. 2013, Inoue et al. 2015, Lanier et al. 2015, Maier et al. 2019).

Interactions between landscape heterogeneity and species-specific 
life-history traits (body size, dispersal capacity, habitat requirements, 
etc.) will ultimately determine the degree of geographical diversifi-
cation (Paz et al. 2015, Massatti and Knowles 2016, Papadopoulou 
and Knowles 2016) and whether current patterns of genomic vari-
ation are dominated by the signals left by either historical or con-
temporary demographic processes (Zellmer and Knowles 2009, 
González-Serna et al. 2019). Taxa with limited vagility and narrow 
habitat requirements are expected to experience marked demo-
graphic changes in response to shifts in landscape composition and 
show deeper genetic structures (Ikeda et  al. 2012, Schoville et  al. 
2012, Ortego et al. 2015b). This is often the case of alpine species, 
for which the genetic consequences of contemporary landscape com-
position and range shifts driven Pleistocene climatic oscillations are 
well known and fairly predictable (e.g., DeChaine and Martin 2006, 
Knowles and Carstens 2007, Maier et al. 2019). However, there is 
less consensus about how Pleistocene glacial cycles have shaped the 
demography of taxa with broad climatic niches, large distributions 
or high dispersal capacities. These species are expected to experience 
more extended gene flow, which will likely erase the genetic signa-
tures left by ancient demographic dynamics and reduce the oppor-
tunity for local adaptation (Bohonak 1999, Lenormand 2002). The 
insights that can be gained from their study are often perceived as 
limited, and this is probably the reason why generalist and widely 
distributed species have tended to receive less attention than taxa 
with narrower ecological requirements in the context of Pleistocene 
phylogeography research (Jacobsen et al. 2014, Inoue et al. 2015, 
González-Serna et al. 2020).

Here, we use high-throughput sequencing data to study the pro-
cesses that have shaped spatial patterns of genomic variation in the 
Pantel’s grasshopper Omocestus panteli (Bolívar, 1887) (Orthoptera: 
Acrididae). This species is a small-sized (females: 18–23 mm; males: 
13–17  mm) and macropterous (i.e., long-winged) grasshopper en-
demic to the Iberian Peninsula (Clemente et al. 1991, Cigliano et al. 
2019). It is a very common and abundant species, being distributed 
across a wide elevational range (from sea level to 2,600 m) and nu-
merous habitat types (Clemente et al. 1991, Presa et al. 2016). These 
include Mediterranean dry grasslands, meadows, agricultural areas, 
and abandoned fields (Clemente et al. 1991, Presa et al. 2016). The 
species is univoltine (i.e., a single generation per year), with adults 
present from April to November and population peaks in September 
(Clemente et al. 1991). The wide climatic niche and broad distribu-
tion of the species raises the question on whether its populations show 
widespread gene flow or if, on the contrary, present significant genetic 
structure linked to contemporary landscape composition or historical 
range fragmentation driven by Pleistocene climatic oscillations. To 
address this central question, we 1) first employed a suite of com-
plementary methods to quantify spatial patterns of genetic structure 
and admixture in the Pantel’s grasshopper. These analyses supported 

significant genetic subdivision but also considerable genetic admix-
ture among range-wide populations of the species, rejecting the hy-
pothesis of genetic panmixia. To shed light on the proximate processes 
underlying spatial patterns of genomic variation in contemporary 
populations, 2) we estimated the timing of geographical diversifica-
tion using a coalescent-based simulation approach, 3) complemented 
this information with spatially-explicit testing of alternative scenarios 
of current and historical population connectivity within a landscape 
genetics framework. Specifically, we tested whether genetic differen-
tiation among populations is explained by geographical distances 
(isolation-by-distance, IBD; Slatkin 1993), topographic complexity 
(weighted topographic distances, WTD; Wang 2020), environmental 
dissimilarity (isolation-by-environment, IBE; Sexton et  al. 2014, 
Wang and Bradburd 2014), and resistance distances defined by the 
distribution of environmentally suitable habitats as inferred from 
projections of a species-specific environmental niche model (ENM) 
to present-day and last glacial maximum (LGM, ca. 21 ka) biocli-
matic conditions (isolation-by-resistance, IBR; McRae 2006, McRae 
and Beier 2007). Finally, we 4) used genomic data to reconstruct the 
demographic history of the study populations and determine whether 
effective population sizes are predicted by contemporary or LGM es-
timates of environmental suitability and if their changes through time 
are compatible with ENM-based inferences of species’ distributional 
shifts (Fordham et al. 2014).

Methods

Population Sampling
Between 2010 and 2014, we sampled 21 populations of the Pantel’s 
grasshopper O. panteli, covering the entire distribution of the species 
(Presa et al. 2016; Fig. 1). We opted for a genotyping strategy based 
on covering more localities at the expense of reducing the number of 
analyzed individuals per population (n = 1–5 individuals/population; 
Table 1). This allowed us to infer in more detail spatial patterns of 
genetic structure and admixture but resulted in small sample sizes 
for some populations (Table 1; Fumagalli 2013). For this reason, 
landscape genetic analyses and demographic reconstructions (see 
below for details) were based only on those populations with five 
genotyped individuals (n = 14 populations; Table 1), a sample size 
that has proven to provide reliable estimates of genetic diversity and 
differentiation (Nazareno et al. 2017, González-Serna et al. 2020, 
Li et  al. 2020). We registered spatial coordinates using a Global 
Positioning System (GPS) and preserved whole specimens at −20°C 
in 1,500 µl ethanol 96% until needed for genomic analyses. Further 
details on sampling locations are provided in Table 1.

Genomic Library Preparation
We used NucleoSpin Tissue (Macherey-Nagel, Düren, Germany) kits to 
extract and purify genomic DNA from a hind leg of each individual. We 
processed DNA into two genomic libraries using the double-digestion 
restriction-site associated DNA sequencing procedure (ddRADseq) de-
scribed in Peterson et al. (2012). In brief, we digested DNA with the 
restriction enzymes MseI and EcoRI (New England Biolabs, Ipswich, 
MA) and ligated Illumina adaptors, including unique 7-bp barcodes 
to the digested fragments of each individual. We pooled ligation prod-
ucts and size-selected them between 475 and 580 bp with a Pippin 
Prep machine (Sage Science, Beverly, MA). We amplified the frag-
ments by PCR with 12 cycles using the iProofTM High-Fidelity DNA 
Polymerase (BIO-RAD, Veenendaal, The Netherlands) and sequenced 
each library in a single-read 150-bp lane on an Illumina HiSeq2500 
platform at The Centre for Applied Genomics (Toronto, ON, Canada).
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Genomic Data Filtering and Assembling
We used the different programs distributed as part of the stacks 
v. 1.35 pipeline (process_radtags, ustacks, cstacks, sstacks, and popu-
lations) to assemble our sequences into de novo loci and call geno-
types (Catchen et al. 2013). Reads were de-multiplexed and filtered 
for overall quality using the program process_radtags, retaining 
reads with a Phred score > 10 (using a sliding window of 15%), no 
adaptor contamination, and that had an unambiguous barcode and 
restriction cut site. Raw reads were screened for quality with fastqc 
v.  0.11.5 (A. Simon, https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and all sequences were trimmed to 129-bp using 

seqtk (L. Heng, https://github.com/lh3/seqtk) in order to remove 
low-quality reads near the 3′ ends. Filtered reads of each individual 
were assembled de novo into putative loci with the ustacks program. 
The minimum stack depth (m) was set to three and we allowed a 
maximum distance of two nucleotide mismatches (M) to group reads 
into a ‘stack’. We used the ‘removal’ (r) and ‘deleveraging’ (d) algo-
rithms to eliminate highly repetitive stacks and resolve over-merged 
loci, respectively. Single nucleotide polymorphisms (SNPs) were iden-
tified at each locus and genotypes were called using a multinomial-
based likelihood model that accounts for sequencing errors, with the 
upper bound of the error rate (ε) set to 0.2 (Catchen et al. 2011, 

Fig. 1. (A) Map showing the geographical location of sampling populations of Pantel’s grasshopper (Omocestus panteli), with dot colors indicating their 
respective levels of genetic diversity (π, in red to blue scale). Dot size is proportional to the number of genotyped individuals (Table 1). (B–D) Projections of the 
species-specific environmental niche model (ENM) for (B) present and (C–D) last glacial maximum (LGM) bioclimatic conditions under the (C) CCSM4 and (D) 
MIROC-ESM general atmospheric circulation models. Map in the present shows occurrence points (crosses) used for ENM. Population codes as described in 
Table 1.
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2013). A catalog of loci was built using the cstacks program, with 
loci recognized as homologous across individuals if the number 
of nucleotide mismatches between consensus sequences (n) was 
≤ 2.  Each individual data was matched against this catalog using 
sstacks program and output files were exported in different for-
mats for subsequent analyses using the program populations. For 
all downstream analyses, we exported only the first SNP per RAD 
locus (option write_single_snp) and retained loci with a minimum 
stack depth ≥ 5 (m = 5), that were sequenced in at least 50% of the 
individuals of each locality (parameter r = 0.5), represented in ~66% 
of localities (parameter p = 14), and with a minimum minor allele 
frequency (MAF) ≥ 0.01 to reduce the number of false polymorphic 
loci due to sequencing errors.

Quantifying Genetic Structure
We employed three complementary approaches to quantify range-
wide population genetic structure in the Pantel’s grasshopper:
structure: We analyzed genetic structure and admixture using 
the Bayesian Markov chain Monte Carlo clustering method imple-
mented in the program structure v. 2.3.3 (Pritchard et al. 2000). 
We ran structure with 200,000 MCMC cycles after a burn-in step 
of 100,000 iterations, assuming correlated allele frequencies and ad-
mixture (Pritchard et al. 2000). We performed 15 independent runs 
for each value of K genetic clusters (K = 1 to K = 10) to estimate the 
most likely number of clusters. We retained the 10 runs having the 
highest likelihood for each value of K and determined the number of 
genetic clusters that best describes our data according to log prob-
abilities of the data (LnPr(X|K) (Pritchard et al. 2000) and the ∆K 
method (Evanno et al. 2005), as implemented in structure har-
vester (Earl and vonHoldt 2012). We used clumpp v.  1.1.2 and 
the Greedy algorithm to align multiple runs of structure for the 
same K value (Jakobsson and Rosenberg 2007) and distruct v. 1.1 
(Rosenberg 2004) to visualize as bar plots the individual’s probabil-
ities of population membership.

Discriminant analysis of principal components (DAPC): We 
used DAPC to identify clusters of genetically related individuals 
(Jombart et al. 2010). This method does not lay on the assumptions 

of structure (i.e., HWE and gametic disequilibrium; Pritchard 
et al. 2000) and could be more efficient to detect complex patterns 
of genetic differentiation (Jombart et al. 2010). We ran DAPC using 
the package adegenet (Jombart 2008) in R v. 3.6.1 (R Core Team 
2020). First, we used the fi nd.cluster function using all principal 
components (PCs) to determine the best-supported number of gen-
etic clusters (from K = 1 to K = 10) using the Bayesian Information 
Criterion (BIC). Second, we determined the optimal number of 
PCs for the DAPC by cross-validation using the xvalDapc function 
with 100 replicates and selected the number of PCs associated with 
the lowest root mean squared error (RMSE) value. Lastly, we ran 
DAPC using all available discriminant functions and calculated the 
individual’s probabilities of population membership to each cluster, 
which were visualized as bar plots using distruct (Rosenberg 2004).

Principal component analysis (PCA): In order to visualize the 
major axes of genomic variation, we performed a PCA as imple-
mented in the R package adegenet (Jombart 2008). Before run-
ning the PCA, we replaced missing data with mean allele frequencies 
using the scaleGen function (Jombart 2008).

Divergence Time Estimation
We used the composite-likelihood simulation-based approach 
implemented in fastsimcoal2 (Excoffier et  al. 2013) to esti-
mate divergence times among the three main genetic clusters 
(northwestern, central-southern, and northeastern) inferred by 
analyses of genetic structure described in the previous section 
(see Results section; e.g., Lanier et  al. 2015). To avoid poten-
tial confounding effects in parameter estimation resulting from 
post-divergence admixture (revealed by structure; see Results 
section), we selected for fastsimcoal2 analyses the two popula-
tions with lowest degree of admixed ancestry for each of the three 
main genetic clusters (AMES-AMEA, MARC-MADR, and FRED-
CABI; i.e., 10 individuals per deme; Table 1; e.g., Tsuda et  al. 
2015, Zeng et al. 2018). We allowed gene flow between demes and 
considered that central-southern and northeastern populations 
share a most recent common ancestor, as supported by the com-
paratively lower composite likelihood of pilot runs for alternative 

Table 1. Locality, code, number of genotyped individuals (n), latitude, longitude, and elevation for each sampled population.

Locality Province/district Country Code n Latitude Longitude Elevation (m)

Ames La Coruña Spain AMES 5 42.868379 −8.662350 80
Amear Orense Spain AMEA 5 42.544560 −8.016102 720
Vale de Frades Bragança Portugal VALE 4 41.632393 −6.517746 680
Puerto del Tremedal Ávila Spain TREM 3 40.362809 −5.612417 1,620
Sierra de Ávila Ávila Spain AVIL 5 40.655811 −4.983793 1,680
Puerto del Pico Ávila Spain PICO 5 40.346455 −5.014433 1,260
Fuenteguinaldo Salamanca Spain FUEN 5 40.451919 −6.627120 860
Sartajada Toledo Spain SART 5 40.216163 −4.782313 440
Mirabel Cáceres Spain MIRA 4 39.841341 −6.258787 450
Arroyo del Marchés Toledo Spain MARC 5 39.541096 −4.425089 1,010
Sierra Madrona Ciudad Real Spain MADR 5 38.482741 −4.263534 800
Serra de Monchique Algarve Portugal MNCQ 5 37.315478 −8.590395 870
Puerto de La Ragua Granada Spain RAGU 5 37.105101 −3.025233 2,030
Riofrío de Riaza Segovia Spain RIOF 5 41.247832 −3.456831 1,250
Matamorisca Palencia Spain MATA 4 42.842906 −4.322320 980
Sierra de la Demanda La Rioja Spain DEMA 5 42.157401 −3.085410 1,380
Litago Zaragoza Spain LITA 4 41.792922 −1.763370 980
Sierra de Urbasa Navarra Spain URBA 1 42.798817 −2.143702 920
San Juan de la Peña Huesca Spain SJPE 3 42.506952 −0.664140 1,210
Fredes Tarragona Spain FRED 5 40.705840 0.170230 1,090
Puerto de Cabigordo Teruel Spain CABI 5 40.436127 −0.925172 1,560
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topological relationships (Fig. 2). We calculated a folded joint site 
frequency spectrum (SFS) considering a single SNP per locus to 
avoid the effects of linkage disequilibrium. To remove all missing 
data for the calculation of the joint SFS, minimize errors with 
allele frequency estimates and maximize the number of variable 
SNPs retained, each population group was downsampled to 70% 
of individuals (i.e., 7 individuals per deme) using a custom Python 
script written by Qixin He and available on Dryad (Papadopoulou 
and Knowles 2015). Final SFS contained 4,105 variable SNPs. 
Because it is not accurate to estimate the number of monomorphic 
sites when a single SNP is retained per locus, invariable sites were 
excluded from likelihood calculations with the ‘removeZeroSFS’ 
option in fastsimcoal2 (Excoffier et al. 2013). For this reason, 
in order to enable the estimation of all other parameters and im-
prove the performance of simulations by reducing the number 
of parameters to be estimated from the data (see Excoffier and 
Foll 2011, Excoffier et al. 2013), we fixed in the analyses the ef-
fective population size for one of the demes (northeastern popula-
tions, FRED-CABI). Parameters estimates obtained fixing effective 
population sizes for the two other demes (i.e., AMES-AMEA or 
MARC-MADR) produced similar results (Supp Table S1 [online 
only]). The effective population size fixed in the model was cal-
culated directly from empirical data from the level of nucleotide 
diversity (π) of fixed and variable sites and mutation rate per site 
per generation estimated for Drosophila melanogaster (μ; 2.8  × 
10–9; Keightley et  al. 2014; e.g., Tonzo et  al. 2020). The model 
was run 100 replicated times considering 100,000–250,000 simu-
lations for the calculation of the composite likelihood, 10–40 
expectation-conditional maximization (ECM) cycles, and a stop-
ping criterion of 0.001 (Excoffier et al. 2013). Point estimates for 
the different demographic parameters were selected from the rep-
licate with the highest maximum composite likelihood. Finally, we 
calculated confidence intervals of parameter estimates from 100 
parametric bootstrap replicates by simulating SFS from the max-
imum composite likelihood estimates and re-estimating param-
eters each time (Excoffier et al. 2013).

Environmental Niche Modeling
We built an environmental niche model (ENM) to predict the 
geographic distribution of environmentally suitable areas for the 
Pantel’s grasshopper both in the present and during the last glacial 
maximum (LGM, ca. 21 ka). Maps obtained for these two time 
periods were then used to perform landscape genetic analyses and 
determine the impact of distributional shifts and environmental 
suitability on the demography of the species, as detailed in the next 
sections. To build the ENM, we used the maximum entropy algo-
rithm implemented in maxent v.  3.3.3 (Elith et  al. 2006, 2011; 
Phillips et  al. 2006, Phillips and Dudík 2008) and the 19 biocli-
matic variables from the worldclim v. 2.1 dataset obtained for the 
period 1970–2000 (http://www.worldclim.org/) and interpolated to 
30-arc-sec resolution (~1 km2 cell size) (Hijmans et al. 2005). To 
generate climate suitability maps during the LGM, we projected the 
ENM onto LGM bioclimatic conditions derived from the CCSM4 
(Community Climate System Model; Braconnot et  al. 2007) and 
the MIROC-ESM (Model of Interdisciplinary Research on Climate; 
Hasumi and Emori 2004) general atmospheric circulation models. 
We built the ENM using our own species occurrence data and rec-
ords available in the literature, the Global Biodiversity Information 
Facility (GBIF.org, 23 September 2020, GBIF Occurrence Download 
https://doi.org/10.15468/dl.sxacwk), and iNaturalist (https://www.
inaturalist.org/). Prior to modeling, we mapped and examined all 
records to identify and exclude those corresponding to obvious geo-
referencing errors. To reduce the problems associated with sam-
pling bias and the strong spatial aggregation of available species 
records, we applied a systematic sampling correction by randomly 
selecting a single occurrence record among those falling within 
the same ~1,500 km2 grid cell (Fourcade et  al. 2014). After this 
filtering step, we retained a total of 149 occurrence records. We 
used the package enmeval (Muscarella et al. 2014) in R to con-
duct parameter tuning and determine the optimal feature class (FC) 
and regularization multiplier (RM) settings for maxent. We tested 
a total of 128 models of varying complexity by combining a range 
of regularization multipliers (RM) (from 0 to 15 in increments of 
1)  with eight different feature classes (FC) combinations (L, LQ, 
LQP, H, T, LQH, LQHP, LQHPT, where L  =  linear, Q  =  quad-
ratic, H = hinge, P = product, and T = threshold) (Muscarella et al. 
2014). We compared maxent models with different settings using 
the Akaike Information Criterion corrected for small sample size 
(AICc) (Warren and Seifert 2011) and followed the approach de-
tailed in González-Serna et al. (2019) for variable selection.

Landscape Genetic Analyses
We applied a landscape genetic approach to analyze a comprehen-
sive suite of factors that could hypothetically explain genetic dif-
ferentiation (FST) among populations of the Pantel’s grasshopper. 
Pairwise FST were calculated using the program populations in 
stacks (Catchen et  al. 2013) and significance determined with 
Fisher’s exact tests after 10,000 permutations as implemented in 
arlequin v. 3.5 (Excoffier and Lischer 2010). These analyses were 
restricted to the 14 populations with five genotyped individuals 
(Table 1). Explanatory variables include:

 (i) Geographical distance: We calculated the geographical distance 
between sampled populations using geographic distance 
matrix generator v.  1.2.3 (http://biodiversityinformatics.
amnh.org/open_source/gdmg).

 (ii) Environmental dissimilarity: We used arcgis v.  10.3 (ESRI, 
Redlands, CA, USA) to extract for each sampling locality the 
values of the 19 present-day bioclimatic variables available in 

Fig. 2. Demographic model used in FASTSIMCOAL2  analyses to estimate timing 
of population divergence (TDIV1 and TDIV2), mutation-scaled ancestral (θ ANC1 
and θ ANC2) and contemporary (θ NW, θ CS, and θ NE) effective population sizes, 
and migration rates per generation (m1 and m2).
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worldclim at 30 arc-sec resolution (ca. 1 km2; Hijmans et al. 
2005) and estimate environmental dissimilarity between popula-
tions (e.g., Tonzo et al. 2019, González-Serna et al. 2020). To sum-
marize and reduce strong redundancy among the 19 bioclimatic 
variables, we ran a principal component analysis (PCA) in SPSS v. 
26 (IBM, NY, USA). Then, we used the ‘dist’ function from R to 
calculate environmental dissimilarity between each pair of popu-
lations based on Euclidean distances for the obtained scores of the 
first three principal components (PCs; eigenvalues >1), which cu-
mulatively accounted for 88.78% of the variance (PC1: 43.09%; 
PC2: 32.54%; PC3: 13.15%).

 (iii) Weighted topographic distance: We used the elevation layer 
available in worldclim to calculate weighted topographic 
distances between each pair of populations, as implemented 
in the R package topodistance (Wang 2020). We calculated 
weighted topographic paths using the topoWeightedDist func-
tion, with a linear function to weight angle of aspect changes 
and an exponential function to weight the slope between cells, 
as recommended by Wang (2020).

 (iv) IBR: We built spatially-explicit IBR scenarios of population con-
nectivity based on the configuration of environmentally suitable 
areas as inferred from projections of the ENM to present-day 
and LGM (both CCSM4 and MIROC-ESM) bioclimatic con-
ditions. Resistance distances between all pairs of populations 
were calculated under each scenario (current, LGMCCSM, and 
LGMMIROC-ESM) using an eight-neighbor cell connection scheme 
in circuitscape v.  4.0.5 (McRae 2006, McRae and Beier 
2007). We also calculated resistance distances based on a ‘flat 
landscape’ (i.e., all cells have equal resistance value), which is 
analogous to geographical distance but more appropriate for 
comparison with others competing models also generated with 
circuitscape (Noguerales et  al. 2016, González-Serna et  al. 
2018).

We used multiple matrix regressions with randomization (MMRR; 
Wang 2013) to test all distance matrices against a matrix of popula-
tion genetic differentiation (FST). The model was initially constructed 
with all explanatory terms fitted (i.e., a full model) and final model 
was selected using a backward-stepwise procedure by progressively 
removing nonsignificant variables (starting with the least significant 
ones) until all retained terms within the model were significant. Then, 
we tested the significance of the rejected terms against this model to 
ensure that no additional variable reached significance. The result is 
the minimal most adequate model for explaining the variability in 
the response variable, where only the significant explanatory terms 
are retained (e.g., Ortego et al. 2015a).

Genetic Diversity and Demographic History
We analyzed whether genetic diversity (nucleotide diversity, π) and 
long-term effective population sizes (Ne; Sensu Peart et  al. 2020) 
are explained by geography and contemporary or LGM environ-
mental suitability. We calculated nucleotide diversity (π) for each 
studied population using the program populations from stacks. 
(Catchen et al. 2013). Long-term Ne, an estimate of the demographic 
trajectory of populations through evolutionary time, was calcu-
lated using stairway plot (Liu and Fu 2015). stairway plot re-
constructs changes in Ne through time implementing a SFS-based 
multi-epoch demographic model that does not require whole-
genome sequence data or reference genome information (Liu and 
Fu 2015). These analyses were restricted to the 14 populations with 
five genotyped individuals (Table 1), as the calculation of the SFS 
requires a downsampling procedure to remove missing data. Each 

population was downsampled to 80% of individuals (i.e., four indi-
viduals per population) as detailed for fastsimcoal2 analyses. We 
ran stairway plot considering a one-year generation time for the 
species (Clemente et  al. 1991), assuming a mutation rate per site 
per generation of 2.8 × 10–9 (Keightley et al. 2014), and performing 
200 bootstrap replicates to estimate 95% confidence intervals (Liu 
and Fu 2015). Long-term Ne was calculated for each population as 
the harmonic mean of population sizes inferred by stairway plot 
at each time interval (for a similar approach, see Peart et al. 2020).

We used generalized linear models (GLM) in SPSS to analyze gen-
etic diversity and long-term Ne in relation to geography (latitude, lon-
gitude, and elevation) and environmental suitability as inferred from 
projections of the ENM to present-day and LGM (both CCSM4 and 
MIROC-ESM) bioclimatic conditions. Model selection was performed 
as detailed in the previous section for landscape genetic analyses.

Results

Genomic Data
The average number of reads retained per individual after the 
different quality filtering steps was 1,810,556 (range= 132,388-
2,637,560 reads; Supp Fig. S1 [online only]). On average, this 
represented 75% (range = 35–86%) of the total number of reads 
recovered for each individual (Supp Fig. S1 [online only]). The final 
dataset contained 14,454 SNPs with 33.53% of missing data.

Quantifying Genetic Structure
structure analyses identified that the most likely number of gen-
etic clusters was K = 3 according to the ∆K criterion, but LnPr(X|K) 
reached a plateau at K = 6 (Supp Fig. S2a [online only]). Analyses 
for K = 2 separated northeastern populations from the rest of the 
populations (Fig. 3). For K  =  3, the three genetic clusters separ-
ated northwestern, northeastern, and central-southern populations  
(Fig. 3). Genetic clusters inferred at higher K-values split hierarch-
ically but, in most cases, populations presented a considerable de-
gree of genetic admixture (Fig. 3). Discriminant analysis of principal 
components (DAPC) presented similarities, but also remarkable dif-
ferences, with the results yielded by structure. First, the most likely 
number of genetic clusters according to the Bayesian Information 
Criterion (BIC) was K  =  1, suggesting lack of genetic structure 
(Supp Fig. S2b [online only]). However, analyses for K = 2–4 sep-
arated populations in a geographic fashion and all individuals and 
populations were assigned with a 100% probability to a single 
genetic cluster (i.e., lack of genetic admixture). Analyses for K = 2 
separated northwestern populations from the rest of the popula-
tions. For K = 3, the three genetic clusters separated northwestern, 
northeastern, and central-southern populations (Fig. 3). Analyses 
for K = 4 split northeastern populations into two well-defined gen-
etic clusters, one including the nearby populations FRED and CABI 
and another SJPE, URBA and LITA (Fig. 3). Higher K-values in-
consistently assigned populations to different genetic clusters across 
replicate runs (not shown). Principal component analysis (PCA) con-
firmed the main results yielded by structure and DAPC, separating 
northwestern, northeastern, and central-southern populations (Fig. 
4). The relative placement of populations in the multivariate space 
also showed a good correspondence with their respective degree of 
shared ancestry inferred by structure (Figs. 3 and 4).

Divergence Time Estimation
Analyses based on the SFS in fastsimcoal2 supported that the three 
genetic clusters diverged during the last glacial period (Table 2). 
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Northwestern populations split from the rest of the populations ca. 
112 ka (95% CI: 111–115 ka), whereas the most recent divergence 
between northeastern and central-southern populations took place 
ca. 39 ka (95% CI: 38–40 ka) (Table 2). Gene flow among demes 
was low and estimates of ancestral and contemporary population 
sizes indicate that the species experienced a demographic expansion 
after the first genetic split (TDIV1) and a contraction after the most 
recent split (TDIV2; Table 2).

Environmental Niche Modeling
After parameter tuning, the most supported ENM (i.e., lowest AICc) 
was the one built considering a regularization multiplier of 2 and a 
linear-quadratic (LQ) feature class. After removing highly correlated 
variables (r ≥ 0.9; BIO7, BIO10, BIO11, BIO13, BIO16, BIO17, and 
BIO18) and those with zero percent contribution (BIO5 and BIO19), 
10 bioclimatic layers were retained to build the final ENM (sorted 
by percent contribution, BIO1: 35.6%; BIO8: 26.2%; BIO9: 9.5%; 
BIO14: 8.8%; BIO6: 7.3%; BIO2: 6.3%; BIO4: 2.3%; BIO12: 
2.3%; BIO15: 1.0%; BIO2: 0.7%). The map of environmental suit-
ability for current bioclimatic conditions is congruent with the con-
temporary distribution of O. panteli, with higher suitability in the 
more humid northern half of Iberia and very low suitability around 
the Mediterranean coast and the Guadalquivir and Ebro depressions 
where the species becomes rare (Fig. 1B). Projection of the ENM to 
LGM bioclimatic conditions under the CCSM4 and the MIROC-
ESM general circulation models yielded different predictions (Fig. 

1C and D). The CCSM4 model predicted higher environmental suit-
ability in absolute terms as well as the presence of the species in 
some areas (e.g., northeastern Iberia) where the MIROC-ESM model 
predicted very low probabilities of presence (Fig. 1C and D). In com-
parison with predictions under current conditions, both CCSSM4 
and MIROC-ESM revealed an overall higher availability of envir-
onmentally suitable areas in central, southern, and western Iberia 
and a lower suitability in some areas of northern Iberia (Fig. 1C and 
D). As shown for current conditions, environmental suitability was 
predicted to be very low along a large portion of the Mediterranean 
coast during the LGM (Fig. 1C and D).

Landscape Genetic Analyses
Genetic differentiation (FST) between populations ranged between 
0.093 and 0.176 (Supp Table S2 [online only]). Univariate matrix 
regressions with randomization showed that all distance matrices 
were significantly correlated with genetic differentiation (P < 0.05 
in all cases; Supp Table S3 [online only]). However, the scenario of 
population connectivity based on the spatial configuration of envir-
onmentally suitable areas during the LGM under the CCSM4 model 
was the best fit to our data (R2 = 0.554; Supp Table S3 [online only]) 
and the only predictor retained into the final model (Table 3; Fig. 5).

Genetic Diversity and Demographic History
Genetic diversity (π) and long-term Ne were significantly inter-
correlated (Pearson’s correlation: r  =  0.833, P  <  0.001). Genetic 

Fig. 3. Results of genetic assignments for populations of the Pantel’s grasshopper (Omocestus panteli) based on the Bayesian method implemented in the 
program STRUCTURE and a discriminant analysis of principal components (DAPC). Each individual is represented by a vertical bar, which is partitioned into 
K-colored segments showing the individual’s probability of belonging to the cluster with that color. Thin vertical black lines separate individuals from different 
populations. Analyses are based on a dataset of 14,454 SNPs. Population codes as described in Table 1.

Copyedited by: OUP

D
ow

nloaded from
 https://academ

ic.oup.com
/isd/article/5/5/2/6363648 by guest on 08 Septem

ber 2021

http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab009#supplementary-data
http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab009#supplementary-data
http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab009#supplementary-data


8 Insect Systematics and Diversity, 2021, Vol. 5, No. 5

diversity was negatively associated with latitude (t  =  −3.11, 
P  =  0.006) and positively associated with environmental suit-
ability during the LGM estimated under both the CCSM4 (t = 2.34, 
P = 0.031) and the MIROC-ESM (t = 2.19, P = 0.041) general atmos-
pheric circulation models, which were the only significant variables 
in univariate analyses (P > 0.2 for all other variables). However, 
only latitude was retained into the final GLM after backward se-
lection (Table 4; Fig. 6A). stairway plot analyses revealed that 
most populations have experienced parallel demographic responses, 
undergoing expansions during the last glacial period followed by 
severe demographic declines starting at the onset of the Holocene 
(Fig. 7). Only one population (DEMA) deviated from this general 
pattern, which might be due to the lower number of retained SNPs 
for this population (Fig. 7; Lapierre et  al. 2017). Postglacial de-
clines have reduced effective population sizes (Ne) by >70% (Fig. 7). 
Long-term Ne was significantly and positively associated with en-
vironmental suitability during the LGM under the CCSM4 model, 
which was the only significant variable in univariate analyses (P > 
0.1 for all other variables) and the only one retained into the final 
GLM (Table 4; Fig. 6B).

Discussion
Although the Pantel’s grasshopper is broadly distributed over a wide 
range of altitudes and numerous types of habitats, our analyses re-
vealed significant genetic subdivision dating back to the last glacial 
age. Accordingly, landscape genetic analyses and demographic recon-
structions showed that genetic differentiation between populations 
and their long-term effective population sizes are best explained by 
the spatial configuration of environmentally suitable habitats in the 
LGM. During this time, the species likely had a wider distribution 

but also interspersed unsuitable areas that might have disrupted 
gene flow for extended periods of time, creating opportunity for 
geographic diversification. Collectively, these results suggest that the 
genetic makeup of contemporary populations is not explained by 
current environmental factors nor geographical barriers to dispersal 
but primarily reflects genetic fragmentation during the last glacial 
period followed by postglacial admixture among previously isolated 
gene pools (see also Inoue et al. 2014, Maier et al. 2019).

Glacial Divergence—Postglacial Admixture
Our comprehensive set of analyses (structure, DAPC, and PCA) re-
vealed that genomic variation in the Pantel’s grasshopper is organized 
into three main clusters roughly distributed in northwestern, central-
southern, and northeastern Iberia (Figs. 3 and 4). The inference of 
divergence times based on the coalescence theory indicates that the 
three genetic clusters most likely split during the last glacial period 
(Würm glaciation, ca. 12–115 ka), supporting that geographical di-
versification took place during the coldest stages of the Pleistocene 
(Knowles 2000, Inoue et al. 2014). It is, however, counterintuitive 
that genetic fragmentation originated during the last glacial cycle, 
when the species experienced net population expansions as inferred 
by palaeodistribution modeling (Fig. 1) and genomic-based demo-
graphic reconstructions (Fig. 7). Although the projections of the 
ENM to LGM bioclimatic conditions indicate an overall higher suit-
ability and a wider distribution of the species in central and southern 
Iberia than at present time, the areas corresponding to the current 
location of the other two main genetic clusters might have remained 
relatively isolated (NW lineage) or embedded within a matrix of en-
vironmentally unsuitable habitats (NE lineage) during the last glacial 
period (Fig. 1C). The long duration of glacial periods (ca. 100,000 
yr) and the short generation time of the species (1 yr; Clemente et al. 
1991) could have favored the accumulation of genetic differentiation 
even if local populations experienced net demographic expansions. It 
should be noted that although genetic differentiation was significant 
in most pairwise comparisons, the absolute estimates were low (mean 
FST  =  0.123; range  =  0.093–0.176; Supp Table S2 [online only]). 
When compared with other Iberian grasshoppers, these estimates fall 
within the range of those recovered for pest species with no genetic 
structure (Dociostaurus maroccanus (Thunberg, 1815) (Orthoptera: 
Acrididae): mean  =  0.067; range  =  0.051–0.102; González-Serna 
et  al. 2020) and are much lower than the values obtained for 

Table 2. Parameters inferred from coalescent simulations with 
FASTSIMCOAL2

Parameter Point estimate Lower bound Upper bound

TDIV1 112,135 110,502 114,954
TDIV2 39,268 38,034 40,471
θ ANC1 123,281 110,866 116,321
θ ANC2 1,372,085 856,299 952,438
θ NW 176,500 170,395 178,279
θ CS 220,941 218,161 226,361
m1 9.30 × 10–6 9.40 × 10–6 9.75 × 10–6

m2 7.29 × 10–6 6.71 × 10–6 7.07 × 10–6

Table shows point estimates and lower and upper 95% confidence inter-
vals for each parameter, which include timing of population divergence (TDIV), 
mutation-scaled ancestral and contemporary effective population sizes (θ), 
and migration rates per generation (m). Estimates of time are given in units 
of generations. See Fig. 2 for details. Note that effective population size for 
northwestern populations (θ NE = 196,429) was calculated from levels of nu-
cleotide diversity (π) and fixed in fastsimcoal2 analyses to enable the estima-
tion of other parameters (see the Methods section for further details).

Fig. 4. Principal component analysis (PCAs) of genetic variation for 
populations of the Pantel’s grasshopper (Omocestus panteli). Analyses are 
based on a dataset of 14,454 SNPs. Colors correspond to the genetic cluster 
at which populations were predominantly assigned according to STRUCTURE 
analyses for K = 6 (Fig. 3). Population codes as described in Table 1. Inset 
image shows a male of Omocestus panteli (photo by Pedro J. Cordero).
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alpine (Omocestus antigai (Bolívar, 1897) (Orthoptera: Acrididae); 
mean = 0.338; range = 0.183–0.457; Tonzo et al. 2019) and highly 
specialized taxa linked to severely fragmented habitats (Mioscirtus 
wagneri (Eversmann, 1859)  (Orthoptera: Acrididae); mean = 0.381; 
range  =  0.075–0.553; Noguerales et  al. 2021). Moderately low 
levels of genetic differentiation between non-admixed populations 
(FST < 0.176) suggest that glacial fragmentation was sufficient for 
geographic diversification even though the large effective population 

sizes sustained by the species probably buffered against genetic drift 
(Charlesworth 2009).

Although structure analyses supported considerable genetic 
admixture in the contact zones, DAPC assigned all individuals and 
populations to a single genetic group (i.e., probability of member-
ship = 1; Fig. 3). The good correspondence between admixture pro-
portions inferred by the structure analyses and the distribution of 
populations in the multivariate principal component space suggests 
that the abrupt genetic discontinuities identified by DAPC are not 
biologically meaningful but rather the outcome of the maximization 
of differences between groups implemented in this approach that, 
otherwise, supported a single genetic cluster as the best fit to the 
data (i.e., lowest BIC for K = 1; Supp Fig. S2 [online only]; see Miller 
et al. 2020). Admixture among populations that diverged during the 
last glacial period is thus the most plausible scenario to explain ob-
served patterns of genomic variation (e.g., Inoue et al. 2014, Li et al. 
2016, Maier et al. 2019). Despite postglacial genetic admixture is 
extensive, this process has not been enough to fully erode the genetic 
structure arisen during the last glacial period. This contrast with pest 
grasshoppers, which show no or subtle genetic structure across large 
geographical distances (e.g., Chapuis et al. 2011, Yadav et al. 2019, 
González-Serna et  al. 2020) despite genomic and fossil evidence 
indicate that some of them have experienced strong demographic 
declines, likely accompanied by range fragmentation, during the 
coldest stages of the Pleistocene (Meco et al. 2010, 2011; González-
Serna et al. 2020). Although the Pantel’s grasshopper is fully winged, 
its small body size (females <23 mm, males <17 mm; Clemente et al. 
1991) has probably reduced the capability of the species to disperse 

Table 3. Multiple matrix regression with randomization (MMRR) for 
genetic differentiation (FST) in relation to: 1) geographical distance; 
2)  weighted topographical distance; 3)  environmental distance; 
4) resistance distances defined by a flat landscape (all cells have 
equal resistance value  =  1); and 5)  resistance distances defined 
by environmental suitability as inferred from projections of the 
species-specific environmental niche model (ENM) to present-day 
and last glacial maximum bioclimatic conditions under the CCSM4 
and MIROC-ESM general atmospheric circulation models

Variable β t P

Explanatory terms
 Constant 0.112 2.91 0.999
 ENM – Last glacial maximum 

(CCSM4)
0.593 10.52 0.002

Rejected terms
 Geographical distance  1.59 0.479
 Flat landscape  0.42 0.881
 Environmental distance  2.67 0.123
 Weighted topographic distance  1.55 0.466
 ENM – Current  0.52 0.863
 ENM – Last glacial maximum 

(MIROC-ESM)
 0.52 0.833

β, regression coefficient; t, t-statistic; P, significance level.

Fig. 5. Relationship between genetic differentiation (FST) and resistance 
distances based on environmental suitability during the LGM inferred by 
projecting the species-specific environmental niche model (ENM) to LGM 
bioclimatic conditions under the CCSM4 general atmospheric circulation 
model.

Table 4. Generalized linear models (GLM) for genetic diversity (nu-
cleotide diversity, π) and long-term effective population size (Ne) 
in relation to latitude, longitude, elevation, and local environmen-
tal suitability as inferred from projections of the species-specific 
environmental niche model (ENM) to present-day and last glacial 
maximum bioclimatic conditions under the CCSM4 and MIROC-
ESM general atmospheric circulation models

Variable β t P

(a) Genetic diversity (π)
 Explanatory terms
  Constant 0.173 5.67 <0.001
  Latitude −0.002 −3.11 0.006
 Rejected terms
  Longitude  −0.19 0.852
  Elevation  0.99 0.336
  ENM – Current  −0.88 0.391
  ENM – Last glacial 

maximum (CCSM4)
 0.38 0.707

  ENM – Last glacial maximum 
(MIROC-ESM)

 0.94 0.358

(b) Long-term effective population size (Ne)
 Explanatory terms
  Constant 22,623 0.80 0.437
  ENM – Last glacial 

maximum (CCSM4)
90,841 2.21 0.047

 Rejected terms
  Latitude  −0.31 0.759
  Longitude  −0.11 0.913
  Elevation  0.35 0.734
  ENM – Current  0.13 0.901
  ENM – Last glacial maximum 

(MIROC-ESM)
 −0.19 0.852

β, regression coefficient; t, t-statistic; P, significance level.
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across large geographical distances and, thus, limited genetic hom-
ogenization (Ortego et al. 2015b).

Demographic History
Demographic reconstructions supported that populations 
throughout the Pantel grasshopper’s range have experienced parallel 
changes in effective population size over time, suggesting that they 
have responded similarly to Pleistocene climatic oscillations (Fig. 7). 
Effective population sizes (Ne) peaked around the LGM and declined 
at the onset of the Holocene, which is congruent with the general-
ized reduction of suitable habitats from LGM to present inferred by 
ENM (Fig. 1). In line with results from landscape genetic analyses, 
long-term effective population sizes were positively correlated with 
environmental suitability during the LGM, highlighting the predom-
inant effect of glacial dynamics on the demographic trajectory of the 
species. Remarkably, only projections under one of the two general 
atmospheric circulation models (CCSM4) explained contemporary 
patterns of genetic variation in the species (i.e., long-term Ne and 
genetic differentiation; Figs. 5 and 6), which is not surprising given 
the different predictions that they produced (Fig. 1). Differences in 
predicted distributions between CCSM4 and MIROC-ESM models 
are expected given their specific assumptions (i.e., CCSM4 assumes 
a stronger temperature decline than MIROC-ESM; Otto-Bliesner 
et  al. 2007, Alba-Sánchez et  al. 2010) and have been reported in 
numerous previous studies (e.g., Fernández-Mazuecos and Vargas 
2013, Zinetti et  al. 2013; Ramírez-Barahona and Eguiarte 2014, 
Wachter et al. 2016). This emphasizes the potential of genomic data 
to validate distributional shifts inferred from ENMs when inde-
pendent sources of information are not available (e.g., pollen records 
or fossils; Nogués-Bravo 2009, Fordham et al. 2014, Metcalf et al. 
2014, Bemmels et al. 2019).

Landscape Genetic Analyses
In line with estimations of divergence time among main genetic 
clusters and correlates of long-term population sizes, our landscape 
genetic analyses support a predominant role of glacial connectivity/

isolation on shaping contemporary patterns of genomic variation 
in the Pantel’s grasshopper. The resistance distances defined by the 
spatial configuration of environmentally suitable habitats during 
the LGM provided the best fit to genetic data, with no significant 
additional effects of topography, current environmental suitability 
or environmental dissimilarity. The role of current versus historical 
landscape composition on contemporary patterns of genetic struc-
ture is exemplified in populations MNCQ (southwestern Iberia) 
and MARC (central Iberia). These populations belong to the same 
genetic cluster (Fig. 3) and present one of the lowest values of pair-
wise genetic differentiation (nonsignificant pairwise FST  =  0.095; 
Supp Table S2 [online only]) despite being located 440 km apart, 
a distance comparable to that separating MARC and other popula-
tions belonging to different genetic clusters (e.g., AMES = 513 km; 
CABI = 315 km; Fig. 1). MARC and MNCQ are currently separated 
by extensive areas with low environmental suitability (Guadiana and 
Guadalquivir depressions), but a continuous habitat was predicted 
to connect them during the LGM (Fig. 1), supporting the role of 
past landscape composition in explaining their contemporary gen-
etic affinities. The much longer duration of glacial periods (70,000–
100,000 yr) in comparison with interglacials (10,000–30,000 yr), 
together with the limited dispersal capacity and large effective popu-
lation sizes of this abundant species (Clemente et  al. 1991, Presa 
et  al. 2016), might have prevented that postglacial gene flow has 
completely eroded the genetic structure generated during the last 
glacial period (Table 2) and resulted in the genetic signals of past 
population subdivision still dominate the genetic background of 
contemporary populations (e.g., Lanier et  al. 2015, Maier et  al. 
2019, Maigret et al. 2020).

Although topographic complexity has been identified as an 
important driver of genetic differentiation in several organisms, 
including grasshoppers, weighted topographic distances did not 
explain gene flow among populations in the Pantel’s grasshopper 
(Table 3). The wide elevational range occupied by the species could 
contribute to continuous gene flow among populations located 
at different altitudes and facilitate genetic connectivity through 

Fig. 6. Relationships (A) between genetic diversity (π) and latitude and (B) between long-term effective population size (Ne) and environmental suitability during 
the last glacial maximum (LGM) inferred by projecting the species-specific environmental niche model (ENM) to LGM bioclimatic conditions under the CCSM4 
general atmospheric circulation model.
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topographically complex landscapes. This contrasts with inferences 
for other grasshopper species exclusively inhabiting lowland or al-
pine habitats and for which mountain ranges and valley bottoms, 
respectively, act as impassable barriers to dispersal (Noguerales et al. 
2016, González-Serna et al. 2019, Tonzo et al. 2019). Finally, we did 
not find any evidence for isolation-by-environment, which could be 
simply due to climate is not an important selective agent in our focal 
species or, alternatively, that gene flow limits the maintenance of 
local adaptations in response to spatially-varying selection (Pujolar 
et al. 2014, Laporte et al. 2016).

Conclusions
Our analyses support that patterns of genomic variation in the 
Pantel’s grasshopper have been predominantly shaped by cycles of 
population isolation and connectivity driven by Pleistocene glacial 
cycles. The estimated divergence of the three main genetic clus-
ters around the last glacial period and contemporary admixture in 

contact zones suggests that the Pleistocene ‘species pump’ model 
might be also useful to explain demographic dynamics and geo-
graphical diversification in at least some species with broad 
climatic niches and distributions (Haffer 1969). Our study illus-
trates the importance of integrating demographic reconstructions, 
palaeodistribution modeling, and testing of alternative scenarios 
of genetic connectivity to understand the proximate processes 
shaping contemporary patterns of genomic variation in species 
distributed across wide elevational and environmental gradients 
and whose responses to Pleistocene climatic oscillations are much 
less predictable than in organisms with narrower environmental 
requirements.

Supplementary Data
Supplementary data are available at Insect Systematics and 
Diversity online.

Fig. 7. Demographic history of the studied populations of Pantel’s grasshopper (Omocestus panteli) inferred using STAIRWAY PLOT. Panels show the median of 
effective population size (Ne) over time, estimated assuming a mutation rate of 2.8 × 10−9 and a 1-yr generation time (both axes in a logarithmic scale). Vertical 
dashed lines indicate the Last Glacial Maximum (LGM; ca. 21 ka). Number of polymorphic SNPs used to calculate the site frequency spectrum (SFS) indicated in 
parentheses. Colors correspond to the main genetic cluster at which populations were predominantly assigned according to STRUCTURE analyses for K = 6 (Fig. 3).  
Population codes as described in Table 1.
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